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THE CALDERON-ZYGMUND DECOMPOSITION
ON PRODUCT DOMAINS

By Sun-YunG A. CaanG and RoBERT FEFFERMAN*

We recall that in a previous paper [1], the authors introduced an
“atomic” decomposition for the space H' of the product of upper half
space. The result in [1] of concern here is the following:

TaEoREM. If f € H'(R% X R2%), then we may write f = L\iay
where Ny are constants with L|N\;| < c|| f || ;1 and ay, are atoms.

In section 1 of the present note, we will recall the definitions of H 1
and atoms on the product space R%Z X R% as used in [1], and then pro-
ceed to prove the converse statement of above theorem. We then apply
the theorem to prove the main result of this note, namely, the Calderon-
Zygmund decomposition in the setting of products of upper half planes.
The decomposition, together with some easy applications of it to inter-
polation problems, are carried out in section 2. Finally in section 3, we will
briefly indicate how the result in section 1 can be modified to give H”-atomic
decomposition for all 0 < p = 1.

The authors would like to thank Professors Coifman, Rochberg,
Taibleson and Weiss of Washington University for many valuable discus-
sions and insights in this research.

1. Atomic decomposition of H'. In what follows, we shall work ex-
clusively with the domain R% X R?% and its distinguished boundary, R?.
We will use the same definitions and notations as in [1]. A point of R4 X
R? will be denoted (, y) wheret = (¢, t,) € R?and y = (y{, y5), y; = 0,
i = 1, 2. We shall often use the following notations: y(¢) will be a C " func-
tion on R' supported on [—1, 1] with ¥ even and jl_l v(@®)dt = 0;if y > 0,
¥, () = (Uy)Y(@t/y) andif y = (y;, y,) and t = (¢4, t,) € R?, then ¥, (@)
= ¥, (1) -, (#2). If £ is a function defined on R? then f(z, y) will, by
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definition, mean f* gby(t). Further, if x = (x;, x,) € R?, I'(x) will denote
the product cone I'(x) = T'(x;) X I'(x,), where fori = 1, 2

T(x) = {@, y) €RY:|x; — ;]| < y;}
Given a function f on R? we define its double S-function by

dtd
s=| 1renrdl.
yiy2

v YT(x)

Then it is a fact that for 1 < p < o

ISCON, = el £,

We may also define functions in H?(R% X R%), 0 < p < oo, as those
functions f with S(f) € L”(R?) and define || f ||, = S, Asit turns
out, this definition of H” spaces is equivalent to the one defined via bound-
ary values of functions on R? of bi-holomorphic functions on R% X R%
(c.f. Gundy-Stein [3], and Merryfield, (to appear)). We also adopt the fol-
lowing definition of ‘‘atom.”

Definition. An “‘atom” is a function a(x, x,) defined on R? whose
support is contained in some open set Q of finite measure such that

M llall, < 1/]2]"
(2) a can be further decomposed into ‘“‘elementary particles” ap as
follows:
(i) a = Xy ap where ap is supported in the triple of a distinct
dyadic rectangle R C Q (say R = I X J)
(il) §,ar(x;,%y)dx; = {,ar(%,x,)dx, = O0foreach %, €I, X, € J
(iii) agisC'with ||ag|l, =< dg,

with Zd%|R| < A/|Q]| (A is an absolute constant).

aaR aaR dR

<
7]

dp ’
= T/
1]

dx, 0x,

‘00 ‘00

With this definition we are ready to give the result of this section.

TaeoreM 1. f € H'(R% X R2%) if and only if f can be written as
f = L\iay where ay are atoms and N, = 0 satisfy L|N\i| < Al f 41+
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As mentioned in the introduction, that each f € H'(R% X R%) could
be decomposed as in Theorem 1 was proved in [1]. Before indicating the
proof of the converse direction, we wish first to give a very pedantic treat-
ment of a one-dimension analogue. Suppose, instead of dealing with the
S-function definition of H!, we can also regard H'(R5") to be functions
whose Hilbert transforms are in L'(R). Let a(x) be a function supported
in an interval I centered at 0, with |, a(x)dx = 0 and ||a||; < 1/|I|. Then
if x is not in the double of 7,

_ 1 1 1]
| Hao)| L«:(y)(x_y ~ Ly | = N §I|a<y>|dy

Il 1
:L_IITIX la(y)|dy
1

= M(xp)(x) - M(a)(x)

where M is the Hardy-Littlewood maximal operator. Notice that, this
shows that H(a) is in L! since

IH @ | L1 away tromn = IMGD 1M @), < ellxllyllall

|1/2. 1 —

=cl|I 772 =

We now wish to extend the estimate
|H(a)(x)| = M(x)x) - M(a)x)

to the product case. Here the atom a is a sum of elementary particles ap
satisfying conditions as in the definition of atoms. Suppose a is supported
in the open set @ C RZ. It is clear that the first factor on the right hand
side of the inequality above is to be replaced by some estimate involving
M(xq)(x), where M = M is the strong maximal operator. And the sec-
ond term should involve terms which are positive majorant of a, and
which could be upper estimated by the bounds of the elementary par-
ticles ap .

We will introduce some more notations before we start our estimate.
Suppose a is an atom supported in the open set Q, a = Lpq ag. Let dg
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be the bound for the elementary particle ag, i.e. dg is the constant as ap-
peared in the definition of atom. For each rectangle § = I X J let

1 J
Sy = {(t,y)GRi X R3 ;teS,—Iz—l—<yls ]Il,—‘z—‘<yzs |J|}.

For two different dyadic rectangles R = I X Jpand § =1 X J, let

min(| I, |1]) min(| Je|, |J])
max(|Ig|, |1|) max(|Jg|, |J])

m(R,S) =

Finally, for each point x € R?, let S, denote the collection of dyadic rec-
tangles containing the point x. Then

dtd
Sz(a)(x)=H la(e, »)]? 5)2;

I'(x) Yiy2

dtdy
yiy3

< X ”s la(t, y)|?

~ ses,
Let
0= U R

RCQ
R dyadic

where R is the triple in both directions of the rectangle R. Fix a point x
with Ms(xg)(x) < V4. Fix S € S8,, 5 =1 X J, and suppose R C Qis a
dyadic rectangle with R N § # ¢, R = Iz X Jg. Then there are four
types of such rectangles R.

@ |Ig| = |1}, |Jr] = ||
This could not occur. For the condition (i) implies that .S C R, hence

_ |SNR| s N Q| 1

which is a contradiction.

(i) [Ig| = |11, [Jg| = |J]
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Then for (¢, y) € S+, we have

lag@ y)| = ISS ag(a, B, (t; — )y, (¢, — B)dadf 1

5_ g (@r(a, B) = agla, By, (t — o)

J Vig

— V(61 = af ¥y, (1, — B)dadB ]

dg 2y 1
ARV
SC<IIIIJRl>dR 1

where aj,, Bj are centers of the intervals I, J respectively and c is a con-
stant depending only on || ¥| ., || ¥’|l.. . Notice that in this special case

UrllJ]

—{7—”*]—‘ =m(S, R) and
R

_IRNS|
1S

R
I
= ﬁ S xr()dt = M(xg)x).

s

Hence for any » > 0 we have

IR 17r

e

1

IR 1—1/r
lag(t, y)| < cm(S, R)dg |

1 Iz
< em(S, R)dgM" " (xg)x) - A

(i) [Ix| = 1], [Jr| = |J]

Similar estimates as in the case (ii) yield the estimate that for

1—1/r
&y)eSy, r>0, J|ag® y)| <cm(S, R)dgM" (xg)(x) ‘

2
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(i) |Ig| = |I|, |Jr] = |J|
For (¢, y) € S,

lag@ )| = Hg agr(a, B, (1, — )Y, (t; — B)dadB ,

m a(at, By, () — @) — ¥y, (t) — o))

(W, (12 — B) — ¥y, (6 — By, )dadB '

X I J
c(” IaR(a,B)ldad@% 'U’Tz'

1 1/r
c<m Sj lag(c, B)| dode)

1 H . )“’ [ 1r |1 Jr|
N\ xrdadf —_
(|1|x|1| ® ] ]

|1R||JRI>‘+“’
111171

IA

AN

A

MY (@R )(x) - (

< edgMY (xg )x)m(S, R)*™V"

where oy, 8, appear in the second identity are centers of the intervals
Iy, Ji respectively. And r is any constant =1, and ¢ is chosen so that
1/t + 1/r = 1.

Combining our estimates from (i) to (iv), we obtain for (¢, y) € S+

la(t, y)|? = |R§Q¢1R(t.y)|2

< Y , 2+ Y : )
C(lRGType(ii)aR( y)l |ReType(iii)aR( y)|

+] X ) "R(t,y)lz)
ReType (iv)

< (X m* (S, R)dEMY (xg)x))( £ Ags)
RCQ RCQ
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where
1—1/r
s IIR| > ( |J| )l/r
— when R is of Type (ii) w.r.t.S.
< 1] | TR
A — J 1—1/r 1 1/r
RS <ﬁ> < |1 > when R is of type (iii) w.r.t.S.
| | 1g|
L(m (S, R)))>~Vr when R is of Type (iv) w.r.t.S.

We now observe that for any r > 1, similar arguments as in [1], section 2
indicates that X, - Ap ¢ is universally bounded independently of S. Thus
for each point x with M¢(xg)(x) < Y4 we have for each r > 1.

dtdy
viy3

(*) S a)x) = T H la(t, y)|?
ses, J g,

<c X X m? (S, R)dAM* (xp)(x)

SeS, RCQ

=c L (Z m* V(S R)dEM?* (xg)(x)
RCQ SeS,

<c L M* V" (x)x)daM¥ (xg)x)
RCQ

=cM?> V(xg)x) £ dEZM*"(xg)(x)
RCQ

Thus

X S (a)(x)dx
{M(xg)x)<1/4}

172

1/2
=< <S Mz_l/'(xg)(x)dx> < r d,ze s Mz/r(xR)dx>
RCQ .

If we choose 1 < » < 2 sothat 2 — 1/r and 2/r > 1 then we have

1) S(a)x)dx < c|Q|'/2(R§Qd§|R |)1/2

S{M(xﬁ)(x)< 1/r}

=c
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The last step in (1) follows from our assumption that a is an atom. We also
have

172

172
S(a)x)dx < (X Sz(a)(x)dx)

Moo > 11

) S
{M(xg)x)>1/4}

< c||a||2|Q|1/2 <ec

Combining the estimates in (1) and (2), we obtain the desired con-
clusion that ||S(a)||;1 = ¢ for some constant ¢ which is the same for every
atom a. We have thus finished the proof of the converse part of Theorem 1.

2. The Calderén-Zygmund decomposition on product domain. We
shall now state the analogue for the product domain R% X R of the Cal-
derén-Zygmund decomposition.

CALDERON-ZYGMUND LEMMA. Let a > 0 be given and f € LP(R?),
1 < p < 2. Then we may write f = g + b where g € L*(R?) and
beH'RY X Ry with || g3 = o) flI}: and b1y = ca' " 117,
where ¢ is a universal constant.

Remarks. (1) We will actually prove that there exist constants A\
and atoms by with Z| N\, | < o' 77| |7 and f = g + ENcb. The con-
clusion that b = I\, b, is in H' then follows from Theorem 1.

(2) The proof represented below for the Lemma is a slight variation
of the proof for the atomic H ! decomposition in [1]. We include it here for
the sake of completeness.

Proof. For the fix o > 0, let @ = {x:S(f)(x) > -2} and let
®, = {all dyadic rectangle R so that [R N Qy| < Y2 |R|.} Let

dtdy
Yiy2

fr@) = H 1 9 — 1)
R

+

where R | is the region defined w, r, ¢. R as in the proof of section 1. Let
& = Lgem, fr, then asin [1], we can estimate the L2-norm of g by duality.
If | £]|, = 1, then

g(x)h(x)dx = g
2 JR2

<R§RO fr (x)>h (x)dx

YR
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= L j H f@& )y, (x—t) h(x)dx
RQ(RO R2 - R+
dtdy
= Huhf(t’ T
REG‘O
d dtd 1/2
(1] 22 ([ 42
2
where we have set
A= UR+
Re®,

But

dtd
H |kt p) |2 = S SYh)x)dx < c||h||? =< c.
(Ri)z Yiy2 R?

As for ff, | £z, y)|*(dtdy/y y,), we claim that

dtdy
Y1y2

S sz(f)dxch | £ y)|?
S(fixX)=sa A

We have

dtd
| spae=] (| ranrss
YS(f)sa S(f)=a “YI'k) Yiy2

Jor

d
H | £ ) 2m x| y) € T(x), S(f)x) < oy didy

By construction, however if (z, y) € A, then m {x: (¢, y) € T'(x), S (f )x) < o}
> Y2y,y,, so this last integral >c [{, | f(z y)|*(dtdy/y,y,).
Now in turn we must estimate §s(f)5a S2(f)(x)dx. Clearly

S SAf)x)dx < o®7P X Sp(f)(x)dx < ca?P ”f”Z
S(f)=sa R2

and this gives the desired estimate for g.
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To define the by, let ®; = {all dyadic rectangle R with |[R N Q|

= 12|R|but|R N Q| < ¥2|R|}.Leth; = Lreq, fr- Let Ay = um@km.

Then if cg = (ffpy | £ »)|? (dtdy/y,y,)"? we see that Lrew, ck <

§14, |£@& »)|? (dtdy/y1y;). And since for any (¢, y) € Ay, m{x € R?,
Ms(xq,_)x) > Y2, x € Qp and (¢, y) € T'(x)} = Y2y,y,. We have

dtd
|| 1rappdd ]
Ay 12 {M(xg,_)>1/2\0

SHWdx < c| Q| (k).

Hence by = b;/2*a|Q_;| is an atom and so for A\, = 2%a|Q_| we
have f = g + EN b where

I\ < X S(f)x)dx < o X SP(f)dx < ca' 7P| £|P.
S(f)>a

And where || g||3 = o*7P A5
As a trivial corollary to the Calderén-Zygmund decomposition, we
obtain the following:

THEOREM 2. Let T be a linear operator which is bounded from
Hl(Ri X Ri) to L'(R?) and bounded on L*(R?%). Then T is bounded on
LP(R?) forall1 < p < 2.

Proof. Let f € LP(R?) and a > 0. According to the Calderén-
Zygmund Lemma, we may write f = g + b where || g||3 < o*77 ||f||” and
51l = ca'™P| £]|7. Then

m{|Tf| > o} = m{|Tg| > a/2} + m{|Th| > a/2}

1 2 1
< oL imelz+ Li7e1,)

1 1
<e(Lrigl+ Ll

1
e I71

T is therefore weak-type (p, p) for 1 < p < 2 and is bounded on L?
in the same range of p by the Marcinkiewicz Theorem.
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Notice that the double Hilbert transform 7f = H, H, f obviously
satisfies the condition in Theorem 2. The theorem is thus a generalization
of the classical M. Riesz Theorem to the setting of the product domain.

3. Atomic decomposition for H?, 0 < p < 1. We wish to make a
few final remarks concerning H” for p < 1. In particular, indicate that
our methods extend to give the atomic decomposition for H? for0 < p < 1.
Notice that for the same reasons as in the classical upper half plane, we
need some higher orders vanishing property of a p-atom for H?-decompo-
sition (c.f. Coifman-Weiss [2]).

Definition. A p-atom is a function a(x,, x,) defined on R? whose
support is contained in some open set Q2 of finite measure such that

M) flally = Q' =7
(2) a can be further decomposed into ‘“‘elementary particles” oy as
follows as in the case of an atom, with a = X.q ag and
D) [;ar(ey, %y)xkdx, = [;ar(%;, x7)x,dx; = 0 for each %, € I,
X €e€Jand = 0,1, 2, ..., k(p), where k(p) is an integer de-
pending on p (k(p) < [2/p — 3/2]).
ii) agisac™ function with ||ag|l, = dg

H BmaR dR a'"aR
(')xl o |I|m ’ 8x2 o
< 9= k(p)+ 1
= —~ m < k(p
1]

with Zd3|R| < A|Q|!7%P,

With this definition of p-atoms, we can then state the parallel result of
Theorem 1 for H? atomic decomposition.

TaeorEM 3. If f € HP(R% X R2), then we may write f = L; \zay
where N\ are constants with EN;, < c, || f || and ay are p-atoms.

Proof. When fisin H ”(Rz X R?%), with the same notation as in
previous sections, we let @, = ELg¢w, fr and say that the elementary
particle bound of fg is dg. Then Igca, d}|R| =< 2%|Q|. If we set
a = ak/2k|9k|1/” and \, = 2k|9k|1/1’ then IN; < c, || f |5, while
lallz2 < |2]'~%7. To prove that fg satisties the higher moments van-
ishing property, we need only require the same property on the kernel v
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defining the area function S. (Since the S-function characterization of H”
is independent of the choice of i, this could be done.) Thus ay, is a p-atom.

We also should remark that a p-atom a is in H? with H”-norm essen-
tially bounded by 1. To see this, we will only slightly vary the proof in
section 1. If a is a p-atom living in Q, a = Lag, ag having bound dg, we
claim that the estimate (*) in section 1 could be modified to the following
estimate (**).

(**) Foreach point x satisfies M(xg)(x) < %

S¥a)x) < ch“‘“'(XQ)(x)(% diM? (xg)(x))

where k = k(p) is the index appeared in the definition of p-atoms. To see
how the index k occurs in the estimate (**), we can trace back the proof of
(*) to check that the index k actually appears in each of the estimates for
type (ii), (iii), (iv) rectangles there. We will skip some details and only
indicate the proof for type (ii) rectangles here. Suppose M(xg)(x) < Va,
SeS, S=IXJandR =1Iy X JgwithR N § # ¢, and |I| < ||
while |Jg| = |J|. Then for (¢, y) € S, we have

lar(t, y)| = ‘ H agr(a, By, (t) — )Y, (t; — B)dadB ‘

= S~§ <aR(a’ B)_aR(aa BJ) (B B]) (CY, BJ)
J YT

R

—B - B;)k (a B;))

Wy, 1 — ) =y (6 — ap) = (e — )y, (¢ — o)
— s —(a— a])k\&;l:) (t, — ar)

Yy, (t, — Bdadp

dp |7 | 1
= o e 1 T )V

<|1R||J|)"“d
|11 Jr| :

7 k+l(S R)dR

IR‘

AR
1
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1—r

< em* (S, R)dpM " (xg)(x)

Ip
a forany r>1

where o, 3, are centers of I, J respectively, and c is a constant depending
on ||y**V||_. From this point on, the same proof as in the estimate (*)
works. Thus

j SP(a)(x)dx
{M(xg)(x) < 1/4}

< j Mp/2(k+2—l/r)(x9)(x)(§dIZQMZ/r(XR)(x))p/de

1/s

g 1/t
< <! Mp/2(k+2—1/r)5(xﬂ)(x)dx> . < g (% dIZQMZ/r(XR)(x))pQ-tdx)

where s, t are any constants satisfying 1/s + 1/¢ = 1. If we choose ¢ so
that (p/2)t = 1, choose r so that 1 < r < 2; and finally choose k so that
p/2(k + 2 — 1/r)s > 1. Then

1/s
S SP(a)x)dx < d MP/Z“‘“—‘/’”(XQ)(x)dx) (T d}|R
{M(xg)(x) < 1/4} R

SCIQ|1/:|Q|(1—2/p)1/t
:C|Q|1—1/r|9|1/1—1 =c.

Notice that when pt = 2

> 1/t
j SP(a)(x)dx < c(i S”’(a)(x)dx) | Q|
{M(xa)(x)>1/4}
< c([lal3N Q"""
=< c([lallD)??| Q|77

< C|Q|(l.—2/p)p/2|9|1—p/2 <ec.

We have thus verified that for an atom a, |lal|,, = [|[S@)], =< c. It re-
mains to find the least lower bound for k i.e. The smallest £ which allow
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the existence of some 1 < r < 2, 1/s + 1/t = 1, pt = 2 so that p/2(k +
2 — 1/r)s > 1. Simple calculation shows that k = [2/p — 3/2] would be
sufficient, where [x] denotes the greatest integer < x. It remains open
whether this choice of k = k(p) is the best possible for H”-atomic decom-
position.
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