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A continuous version of duality of H!
with BMO on the bidisc

By SUN-YUNG A. CHANG and ROBERT FEFFERMAN*

Introduction

The purpose of this paper is to give the atomic decomposition for the
space H' of the polydisc and to obtain a boundary characterization of its
dual space. To begin with, let us mention some of the history of these
problems. The one variable version of the H' theory which we extend here
to the case of product domains has, of course, a very rich and extensive
history. But for our purposes here we wish to single out three main one
variable results of a modern flavor. These are the duality of H' and BMO
(Charles Fefferman |1]), the atomic decomposition of H' (Coifman [2] and
Latter [3]) and the inequality of John-Nirenberg [4] for BMO functions. Now,
in order to extend these results to the polydise, one would probably think
that it would be a routine matter of iterating one dimensional methods men-
tioned above. Perhaps the best illustration of why this is not the case is
given by a counterexample of L. Carleson [5]. In trying to find a simple
characterization of functions @ which are in the dual of H' of the polydisc,
one would be tempted to look at the one-variable definition of BMO involving

the expression

1
5 S o) — @, |dz

(here I is an interval, @, is the mean value of @ over I) and simply introduce
an analogous expression involving some sort of mean-oscillation over rectan-
gles rather than intervals. The effect of Carleson’s work is to show that
this approach fails. The resulting function @(z, ¥) may not act continuously
on H' on the bidisec.

Despite this, all hope is not lost, but the situation becomes considerably
more complicated. The results of the authors in [6] and [7] characterize those
functions @ which are in the dual of H! of the bidisc in terms of the double
Poisson integral of the function @. In this theory the role in one dimension
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played by intervals was played not by rectangles but arbitrary open sets.
The question of how to characterize functions in the dual of H' directly
without considering Poisson integrals remained open. In this paper, we set-
tle this question.

Let us discuss briefly the results of the paper in relation to their analo-
gous one dimensional results.

1. The atomic decomposition for H' functions

In one variable, if f(x) is a real valued function in H '(R') then f(x) can
be written

fl@) = Z N ()
where 3 [\ | < C||f|l,: and a,(x) are particularly simple functions called
“atoms”. An atom is a function a(x) supported in an interval I such that
Sl a(@)de = 0 and |a(x)| < 1/[I]. (See Coifman [2], Latter [3].) This decom-
position is intimately connected to the duality of H' with BMO and has a
number of interesting applications. An analogous decomposition for fune-
tions f defined on R? which are boundary values of functions in H R%: x R2%)
is obtained in Section 1 of this paper. Such an fis written as }_ a2, ¥)

where again 3~ |\, | < C|| f||,» and a, is an atom. But in the product case
an atom a is supported in an open set Q — R? such that [lall: < 1/|Q["7,

S (@, z)dz, = 0, S a(z,, ©,)dz, = 0
1 J

where I is any component interval of the open set of R' obtained by slicing
Q at height «, and J is defined similarly by slicing Q vertically instead of
horizontally. In addition the atom must have the stronger property of being
itself decomposable into even simpler “elementary particles” which are func-
tions e(x,, «,), rather smooth, supported in rectangles R =1 x J C Q so that

S e(x,, x,)dx, = S e(x,, x)dw, = 0 .
I J

2. Duality of H' and BMO

The problem of finding a description of those functions @(x) on R' which
act as bounded functionals on H' was solved by C. Fefferman in his funda-
mental work [1]. The answer as the reader knows, is that @ ¢ BMO RY, i.e.,

ﬁ S |p(x) — @,|de <= M for all intervals IcR'.
I

What is an analogue of this result for the product case? A funection o]
on R* will be in the dual of H'(R: x R2) if and only if for every open set
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QcCR?

1

1Q]
where @, is a function which can be described completely in terms of the
geometry of Q. (In the one variable case Q = I is an interval and @, is any
function which is constant on Q.) More specifically @, is a sum of smooth
functions g(x, ¥) living in rectangles B = I X J such that most of R lies out-
side Q and

|19 = puldady < M

SI 9(x, x)dx, = SJ g(x, x)dx, = 0.

There is another way of characterizing the dual of H'(R%2 x R%), which
is motivated by ideas from double Haar expansions. In the one variable case,
if I is a dyadic interval and @(x) a function on R' then @ can be expanded in
a Haar series, » = 3_@,. If I, is a fixed dyadic interval then }_,_, @,(x) =
(p(x) — ¢1,)Xs, Where ¢, is the mean value of @ over I, so tifat the BMO con-
dition for I, reads || Z;Iclo ?, |12 < M|1,|. InSection 1, we define a non-dyadic
version of the double Haar expansion @ = >_ @, where R is a dyadic rectangle
(pr will behave much like a Haar term—it will live on the triple of R, have
mean value 0 over each horizontal and vertical segment of R, and the dif-
ferent @, will be “almost orthogonal””). We then prove that @ is in the dual
of H'if and only if

1D pea PrllE < M|Q] for every open set QCR?.

3. The John-Nirenberg inequality
In the classical case for a function ¢ in BMO(R'), we have
1
|1

not only for p =1 (the definition) but for all p < . In fact
1

|1
BMO norm of .

We show in Section 3 that for  in the dual of H' we have ||},  ®:l|l} <
C,M|Q| for all open Q@ C R* and in fact we show the sharp result, namely,
that Y r-o®: belongs to the class e”” of functions @, for which ¢**? is in-
tegrable locally.

At this point, we wish to refer the reader to the work of A. Bernard
[8] where the atomic decomposition and duality of H' and BMO spaces is
obtained in the context of double martingales. Finally, the authors would

| I2@) — @,z < M,

S e¢@—¢ridy < M where ¢ is a small constant depending only on the
I
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like to thank L. Carleson and E. M. Stein for some inspiring conversations
about BMO and C. Coifman and Y. Meyer for some incisive comments which
motivated our work.

0. Preliminaries

In what follows, we shall work exclusively with the domain R% x R?
and its distinguished boundary, R%. A point of R% x R% will be denoted
(t,y) where t = (¢, t,)eR*and y = (y,, ¥,), ¥. = 0,1 = 1, 2. We shall often
use the following notation: +(¢) will be a C' function on R' supported on
[ —1, +1] with 4 even and S“wt)dt —0;if y > 0, 4,(t) = (L/y)y(t/y) and if
¥y = (Y, ¥y and t = (¢, t,) € R_21 then +,(t) = ¥, (L)) - 4, (t,). If fis a function
defined on R? then f(¢, y) will, by definition mean f * +,(t). Further, if x =
(x,, x,) € R*, I'(x) will denote the product cone, I'(x) = I'(x,) x I'(x,), where
fori=1,2

F(xl) = {(tiy yi) € R2+ i lxi - til < yi} .

Given a function f on R? we define its double S-function by

s = ||l w22

2

RIS
Then it is a fact that for 1 < p < -,

SO = Collf I,

(see [9] and [10]). If (¢, y) R x R, then R,, will denote the rectangle
centered at t € R* whose side lengths are y, and y,. If Q c R*is open, then
{¢, v)eR: x RL|R,, CQ} will be called S(Q).

Finally, we should say a few words about the definition of H'(R%2 x R2).
Although we consider this at first as the set of boundary value functions on
R? of biholomorphic functions on R} x R?, the recent work of Gundy-Stein
|9] shows that the various definitions via area integrals and maximal funec-
tions are equivalent. For example, we could define H'(R? x R2) as the class
of all functions on R? for which A(f) e L'(R?) where

a(p)a = || 19,9, ) ratay
and u is the multiple Poisson integral of f. Finally if fe H'(R*> x R?}) then
S(f) e L'(R*. (See [9] and [10].)

I. The atomic decomposition for H'(R%> x R%)

The most elementary construction of our program is the decomposition
of a function fin H'((R%)?) into atoms. In the classical case, say on R' (C.
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Fefferman-E. M. Stein |11], Coifman [2]|, Latter [3]), an atom is a function
a(x) supported on an interval I such that

Sa(x)dxzo and ol <-L .

On the polydisk things are a bit more complicated. There we make the fol-
lowing definition:

Definition. An“atom” is a function a(x,, «,) defined on R* whose support
is contained in some open set, Q, of finite measure such that:

(1) lal: S g

(2) x a(x,, x,)dx, = 0

where I is any component interval of a set of the form {x, € R'[(x,, x,) € Q}
(where , is fixed), i.e., a has mean 0 over every component interval of every
x,-cross section of Q.

(3) S a(x,, x,)dx, = 0

where J is any component interval of a set of the form {x,|(x,, 2,) € Q}.
(4) a can be further decomposed into “elementary particles” a, as follows:

(i) @ = Y .as, where a, is supported in a rectangle RC Q (say R =
I x J, and the R in the sum have the property that no one R is contained
in the triple of any other).

(ii) S az(x,, x,)dr, =0, for each w,eJ,
1

S ag(x,, x,)dx, =0, for each x,el.
J

(iii) ap is C' with ||a,ll. = |R[",

I oa Ce d waak < __bn Cy
el = TIRTE ™" 2l = TR
and
o’ay | C A
= L th C[c = —
Hax orle = TRPE 2o Q]

(A is an absolute constant).
With this definition we are ready to give the result of this section.

THEOREM. Let fe H'(RY x R2). Then f can be written as f = 3 Mas
where a, are atoms and A, = 0 satisfy
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(1.1) 2oM = Allf Il

Proof. Let y(x) be defined on R, a C' function supported on | —1, +1},
even, with mean value 0. If y = (y,,¥,), ¥, >0 and z = (x,, x,), we set

V(@) = (1/Y.9)¥(@,/y )y (x./y,), and define f(x, y) by f(x, y) = f* ¥, (x). We
shall normalize + so that

(1.2) CveorE=1.

Then we have the formula <here we assume without loss of generality

that S flx,, x,)dx, = S flx,, x,)dx, = 0>

(1.3) fia) = || £ty won (o — t) 2

2 2
(t.¥)e (R xRY) Y,

In fact, to see this, we need only take the Fourier transform of the right-
hand side which is

- —_— T -~ ~ -~ N ~ N
b TO W oA e gy as) W

Y yg nyZ

=7o|  lewe

Y 1Y2

=fo|  lwer®e | g pd
v1>0 Y, ¥2>0 Y.
= f&) .

Now consider the double S-function given by
) ‘2 dt1dt2dy1dy2
Yiy:
Since f€ H'(R%)*, we have S(f) € L'(R?). Also, set Q, = {S(f) > 2%} and con-

sider the collection R, of all dyadic rectangles R = I x J with the property
that

sh@, e = || it

Clx)XT(zg

RO Q. <—;-;R| and  |RNQ,| ;-;-mi :

For each Re R, let

(L) @ =] s v - o L

Y.Y.

* Since this was written the authors have established that this atomic decomposition
characterizes H'. That is, in addition to the theorem above, we have that if 2, = 0, 3 2, < oo,
and a; are atoms, then

f=> har€H! and [ flm=C3 X .
Details will appear elsewhere. A
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where
=t meR xR [teR, ‘” 1§11|,%<y2§u1}.

Now f(t, ¥) = (f * v,)(t), ¥ is defined as in Section 0. Then we intend to show
that if £, = 3., fr and Q, = {MS(XQk) > 1/100} (M is the strong maximal
operator) then f, is supported in Q,; also if a, = f./2*] Q.| then a, is an atom.
Then from (1.3), f =Y, fr = 2 fi, and 3 24(Q,| < All f |, which will
establish our result.

To show that f,/2¢| £, | is an atom on {2, we first observe that the support
of v, (x — t) as a function of z is contained in the ten-fold dilation of a rec-
tangle Re R, provided te R = I x J and [I]/2 = ¥, < 1|, |J]/2 =y, <I|J].
It follows that the support of ¥, (x — ¢) is contained in Q, and hence the same
is true for f,.

Moreover, if I is any component interval of {z,|(z,, 2,) € Q,} with z, fixed,
we may observe that

S-"#‘y(xl — b, X, — tZ)dxl =0

since either

(1) the support of 4, (x — t) is contained in a rectangle R = I x J for
which IclorelseINI = @;or

(2) x,¢d.

In case (1) S‘ (2, — t, @, — t,)dx, = 0 because S V(& — t)dz, = 0, and
in case (2) there [is nothing to show. Then !
dtdy

l 2

dx,

|, futo, aode, = | || 16, e — 0

dtdy

2

- SS <§7%(x - t)dx>f(t y) =L
~0.

Now let us show that || f ||, < A2%|Q,|"*. The trick here is to use duality.
In fact, suppose ||g|l, = 1. Then

a5 || rowiz| = [[Sen |, 76wt - 0L g

dtdy

2

= (1], s ol ‘“dy) (1§, 1ot Y didy

Here A, denotes the union over all rectangles R € R, of sets of the form R,.

= Denc (|, £ 000 0| S2L

(t,yle
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Now

“ L o,y 29 < S , Sz, x,)dw da,
(tw)eR% xRE Yy R

1J2
= S |g fdx,dx, = 1.
R2 :
To control SS | (¢, v) |*(dtdy/y,y,) we look at
A
|, . S(N@, w)dwds, < @718, < 424, |
Qp=Qp .y
For each (¢, y) € A,, the rectangle R,, centered at ¢t with side lengths y,
and y, has at least a fixed fraction, ¢, of its area inside Q, and at the same

time outside Q,,,. Therefore {x = (x,, ©,)|(¢, y) € [(x,) x ['(x)} N (& — Q,.,)
has measure > cy,y, and

|, . s, edads,
Qp—Qp 1y

= SS £ |, v) eT@), 2ed, — Q,..}] il/t;;gy

= {1, 17, 2y

1Y,

Finally, to establish that fk/2k|ﬁk| is an atom, we must verify the de-
composition of this function into elementary particles.

We examine
dtdy

Y

This function is supported in the 8-fold dilation B of R, has mean 0 over
horizontal and vertical segments of R and since

i =\| e -0

(t,y)e

A
< =
”"/"u”oo = lRI ’

0
st — 0]

s bt = 0]

and

<-4
o R}

H Ty

ox,0x,

this will verify conditions 4 (ii) and (iii) if we get an estimate of the form

2ren, (“u,y)mlf(t, [ %) < A]Q, |2 .
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The left side of this inequality is clearly dominated by “ | (&, »)[(dtdy/y.y.)
which, as we have already seen, satisfies the desired 1nequa11ty We should
remark at this point that if the argument about is carried out in one dimen-
sion then the “atoms” are functions a,(x) on R' supported on open sets Q, =
U;_ L., with I,; the component intervals of Q, and Sl a(x)dx =0, k= 1.

Then the atomic decomposition above says that if fe H l(R‘) then f = Y M,
where a, is an atom supported on Q,. If

0@ = a@ - 2 @|(], aiwar) 11,0,
then :

fa) = 2. |

is a classical atomic decomposition of f into classical L* atoms supported on
intervals. With only minor modifications, we obtain the extension to R",
n > 1, by letting the Whitney decomposition of Q replace the decomposition
into component intervals. On the polydisc however, there is no neat way
of decomposing an open set into its maximal subrectangles.

ai(®)dt)  |L; ., @)

I .
k]

II. The space BMO and its duality with H'

Recall that if @ is a locally integrable function on R, then @ is of bounded
mean oscillation (abbreviated as BMO (R)) if
(2.1) sup, mg P — o e = || Plls < =,
where the supremum ranges over all finite intervals I in R, and @, =
1/|1] S @(x)dx. C. Fefferman and E. Stein proved in [10] that BMO(R) is the
dual space of H'(R%). In this section, we will propose two kinds of definitions
about boundary behavior of BMO functions defined on R*. The main result
is that both kinds of definitions characterize the dual space of H'(R% X R?).
The first definition is motivated by the version of dyadic BMO defined
on R? (cf. the work of Bernard [8], Decomp [11]), where we use all the nota-
tions as introduced in Section 0.

Definition. BMO,, is the space of locally integrable functions ¢ defined
on R?, satisfying:

Supamlizkcg%ll =l <,

where the supremum ranges over all open sets Q of finite measure in R
And for each dyadic rectangle R, @, is defined with respect to @ as in (1.4).
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The second definition is motivated by the work on atomic decomposition
of H'in Section 1. It has the advantage of not depending on the particular
function 4, and also appears closer to the expression (2.1).

Definition. BMO,, is the space of locally integrable functions ¢ defined
on R?* such that given any open set Q R’, there exists a function @, so that
%fs |P(t) — Po(t)[dt < M for some M

I 2
independent of Q where P, satisfies
(@) Pu =3 P.; where each , is supported on the triple R, of distinet
dyadic rectangles R, with |R, N Q| < 1/2|R.|, and #, has mean value zero
over each horizontal and vertical segment of R,
Furthermore, if R, = I, x J,

Cr. 0P, C.. 1
b | il < i ’ H_l = Al ’
® 1Pl = oz, = = R, T,]
110, Cy. 1 0, Ce.
< i and H - < L
||axz = TR TT] ! ox,dz,ll~ = [R, [

for some C,,.

(©) 223 i~k 7, Ch, < c2%- k- Q| foreach k = 1,2, -+ and some ab-
solute constant ¢.

The following theorem is our main result in this section.

THEOREM. Assume @ ¢ L¥R?) satisfying
S (P(xn xz)dxz = S¢(xu xZ)dxl =0

Sfor all (x,, x,) e R:. Then the Sollowing conditions on @ are equivalent:

(i) pe BMO,,;

(i) @ € BMO,,;

(iii) sup 1/|Q| 37, o SUP) < oo, where the supremum ranges over all
finite open sets Q in R?, and Sfor each dyadic rectangle R,

Site) = || It ) 49

1y2
(iv) @ is in the dual of H\(R% x R%).

Remark. Condition (iii) could be reformulated as

supQLSS |P(t, y)lzdt—dy < oo,
IQI S Y.Y,

where S(Q) is the Carleson region associated with Q (i.e., SQ) = {, »):
R,,cQ}). This condition is analogous to the Carleson measure condition
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appearing in [6], [7], [12].
The various implications in the above theorem will be proved in the
order (i) = (iii) = (ii) = (iv) = (iii) = (i).

Proof of the theorem. To begin the proof of (i) — (iii), we need some
elementary lemmas.

LEMMA 1. Let y be an even, C* function supported on | —1, 1] with mean

value 0 as before. We set yr,(x) = (1/y)y(x/y). Then for any s, t in R', and
Yy =2>0, we have

(2.2) [ vt = swete — tyda| < ¢

7
where ¢ is a constant depending only on ||y |lw, ||V ||w.

Proof. After a simple dilation argument, to prove (2.2) one needs only
to estimate an integral of the form gl v(@)P(x)dx where @(x) = y((y/2)(x — 7))
for some » ¢ R. Such an integral CO—I;Id be estimated in the obvious way by

., @) — mip@ds| < allvlllivl. 2

where m can be chosen to be the value y(r + z/y).
For each dyadic rectangle R = I x J, let 9, = {R,: R, is a dyadic rec-
tangle with B, N K # @). For each R, = I, X J, € Yy, let

' _ (min (1], [1]) min (|J], |J,])\»
(2.3) r(R,, R) = (max (|I{, |[l|) max (|J!, |J1|)>

A simple integration of Lemma 1 then yields:

LEMMA 2. Suppose R, € 9,. Then
Si(Pr,) < ¢(r(R,, R))*S} (P)
where ¢ 1s any constant depending only on ||V ||w, ||V ||w.

(i) = (iii). Assume (i) holds, and let ||@||, denote the BMO,, norm of @,
i.e., assume
(2.4) 1 e o Pl S 1l@l%1Q] for all open sets Qc R*.

Fix an open set Q, let Q = UR:QOFB. For each integer £k =1, let 9, =
{(R: |R.NQ|= (1/29|R,}. Let », = 9,\9%_,, (4, is the empty set), and
Q. = Uy,cq, Bi- Finally, fix a big integer N which is to be chosen later, let
@, = ER,_,QN Pry P, = P — @,. By our assumption (2.4), we have for ¢,,
(2.8)  2op o, Ske) S|l = 12 rcay Prlli S 1PIL Q| < enll@|l2 Q]

where ¢y ~ 2V - N is a constant depending only on N.
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To estimate @,, we then claim two things:
(2.6) 2 rea, Sk@) < ¢ 2 rea, 2orcdpsy TRy R)SH(P),

. 3/2
@1 Do Dnespsy "B BDSH®) < 0 D7, (2) T, Si@)

where the ¢’s are constants depending only on || ||«, ||¥']|...
Sincep, = ¢ — p, = ERCQN P, for each fixed R C Q,, we have @,(t, y) =
2 rcs gy Pri(t, ¥) When (¢, y) e R,. Hence

(2.8) SEP) = 222 ey rye s vy Se(Pr)Se(Pr,)
< ¢ X0 Yk me s iy St P)Sa@)(R,, R)P(R,, R)
<X Ynnes sy (SH@) + SE@)(R, RIN(R, R)
<c) ERIeSR\f]N Sk (P)r(R,, R) Eﬂze.qR\HN r(Ry, R)
= cER,eyR\,qN SiZE,(‘P)"'(Ru R) .
The second step in the above inequalities follows from Lemma 2. The last
step follows from the observation ) Ricgp T(Ry B) < co. Adding up all the

terms R C Q, over the estimate (2.8), we obtain (2.6).
If we rewrite

Em-oo 2316_55,\4” (R, B)S(P) = 230 o Eﬂlegﬂ[-wk rea, TRy B)SH(9)
then it is clear that (2.7) would follow from (2.9) below.

(2.9) If R er, then ER<,,Q6 Riedp "R, R) = ¢ - ( : >3/2 )

2k
Inequality (2.9) is an easy consequence of the following simple geometrical
arguments. Suppose R, = I, x J,, R, er,; then among those RC Q,, R =
I x J, such that R, € J,, there are four types:
Type 1): |I,| z |1, |J,| < |J|. Then

Il \&) < \BnB| < |B L g
ST BlSIRNRIsIRne = LR
Thus |I,| = 2*7°*"|I| for some n = 0. Yet for each fixed », the number of
such I's must be <5-2*. As for |J| = 2"|J,| for some m = 0, for each

fixed m, JNJ, # @ implies that the number of such J is less than 5. Thus

1 3/2
e "By VS T, (o) o205

1 3/2
se(gr)
Type (2): |I,| = [I], |J,| = |J|. This could be handled similarly to type
).
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Type 3): |L,| = |1, |J,| =z |J|. Then

| g1 <(BnR|<IQnB|<_ IR
9|IlllJll‘ 1|=| n 1|=| n 1|=2k—1| 1|'

Hence |R,| = 2¥*"'|R| for some |l = 0. Also for each fixed [, the number of
such R’s must be < 5-2'. Thus we get the same estimatefor ., .. ., (R, R,)
as in type (1).

Type (4): |1,| = |1],|J,| =|J|. Similar considerations as in type (3) give
|R| = 2*°*'|R,| for some |l = 0. Also for each fixed I/, the number of such
R’s is < 5. Hence the result follows.

Combining our estimates in (2.5), (2.6), (2.7), and using S}(®) < 2(Si(®,) +
Si(9,)), we obtain

3/2
210) Do, SKP) = exllPB 1] + 0 X0 (&) Deer, S)

o 1 3/2

< oyl @M1 + a7 () Do, S0)
where ¢, is a constant depending only on N, and ¢, is an absolute constant
depending only on || |[w, [

If we apply (2.10) to the open set Q,, and define, for each integer m,
open sets Q, ,, so that the relation of Q, ,, to Q, is the same as Q,, to Q,, then
since |Q,| < ¢, - k- 28{Q,| with ¢, an absolute constant, we have

(2.10) 2 rca, SH@) S exllolls e, k- 24 Q|
o 1 3/2 .
+ ¢ Em:Nﬂ (?) ER(:Qk’m SR((P) .
Substituting (2.10)" back into (2.10), we get

@.11) Toica, 5@) = exlll 10l (1 + ae Ty, () 4)

o 1\ :
F A vn () Dea,.. SH) -

Observe that for each k, m, |Q, .| < ¢cm2™|Q,| < ckm2 ™ |Q,|. Thus if we
let » = ¢, ), .., (1/2%)"* .k, and choose N sufficiently large so that » < 1,
it is clear we can repeat the process (2.11) with respect to Q ., Qi ..., ete.
recursively and obtain
2 rea, SHP) = eyl 2% Q]2 ™)
= Cllo|lk Q|
for some constant C independent of Q,. This establishes (iii).

(iii) = (ii). Suppose @ satisfies sup,1/|Q|D) ., , Si(®) < M. To prove
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@ € BMO,,,, we write @ = 3, ., and for each open set Q C R?, choose &y =
Y. $r, where $, = @, for each R such that |[R N Q| < (1/2)|E|. Then as
verified in Section 1, @, satisfies conditions (a) and (b) in the definition of
BMO,,, where C, = cSR(cp). Condition (¢) can also be verified immediately
as in the following:

Emno|~<1/zk)m| Ci=c EanQI~(1/2’¢)|QI Sk(p) = ¢ ER:Q,, Sk(®)
<c - M|Q|<c-M-2k|Q

where Q, = {x| M, (Q) > 1/2*}. (M, denotes the strong maximal function in
R?.) Furthermore, we have

(2.12) SQ P — ¢Q|2dt = SQ |E|Em9|zu/2)|fel(pﬂlzdt .
Now to finish the proof of this step, we will first verify the easy step
(iii) = (i) along the way.

(iii) = (i). Let J denote some collection of dyadic rectangles. Then
@13) || Dy pet) - otrdt]

= ERey SR2 Pg(t) - g(t)dtl

= 2 LN, o vt - 0 20

= | Zaes ], 2t wict, ) 2

1Y2

(X re s S (X, S(9))
= (e s SH@) "l g]ls -
Thus letting ¢ run through all.g € L*, we obtain || }_,., 2./} < 3,., Si(o).
Letting J be the class of all R C Q, we then obtain (i) from (iii).
We continue the estimate in (2.12) using (2.13) and obtain

IA

(2.12) SQ P — Poldr < ||E|Enm;(1/2)eﬁl Prll*

= Etﬁnmg(uznﬁ; Si(®)
< Y ra Sie) = MG, < eM|Q| .

We have completed the proof that € BMO,,.
(ii) = (iv). Suppose ¢ € BMO,,. To prove it is in the dual of H'(R% xR%),
it suffices to verify that H , a«pdx] = c¢M for each atom a of H'(R: x R2)
R

defined in the sense of the atomic decomposition in Section I. Suppose a is
supported in the open set Q, satisfying all the atomic properties as in the
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definition with respect to , and is divided into elementary particles a, with
the corresponding constant ¢,. We may, by a dilation invariance argument,
assume that |Q| = 1. Then

(2.14) an a(pdx’ - ‘Sga¢d.’c‘ < ‘Sga(qi — gsg)dx‘ + ‘Sgaagdx’
< na|v(§Q|¢-—-¢gvdx)“2+»|§aagdx{

=M+ lSEaR-Zféidxl

where @y, &, are chosen as in the definition of BMO,, with respect to the
open set Q. The rest of the proof is similar to the proof of the step (i) = (iii)
with the following lemma replacing the role of Lemma 2.

LEMMA 3. Given two functions @, and @, supported in R, R, respective-
ly of dyadic rectangles R, = I, X J;, suppose P; € C%(R?) with the following
conditions:

(a) The @, have mean value zero over each vertical and horizontal seg-
ment of R..

b ! , WS—c—i—, ‘3%”
®)ledle =g 32, |- = TRITIT
l% < ¢ laz% < & i=1,2.
0, Il |Rill/2|Ji| 02,02, |l | B, [
Then
(2.15) H «;mdx‘ < cer(R, Ry)
R2

where r(R,, R,) is as defined in (2.3).

Proof of Lemma 3. In the case |I,| = || and |J,| = |J,|, or |L| = | L]
and |J,| = |J;| we may apply twice a dilation argument similar to the one
we used in the proof of Lemma 1 to obtain the result we want. In the case
|L| = |L,| and |J,| = |J,| (or | L] = |1,| and |J,| = |J,]), we write

l Snz ¢1¢2dx \

= ‘S~ ~ (¢1(xn xz) - q)x(mu xz) - (pl(xv mz) + ¢1('m/u mz))@z(xn xz)dxldxz

RiNEy

P ‘ N e m e
= ||l=== Rl 1
g AL LA AR o
< ceCp——— 1 .M
R IR

= ce,c,r(R,, R,) .
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Applying (2.15) to the term S 2 ar-y, Pdx, we have

’SE“E'E@i

= ER:Q Ev?zmm«uznﬁll Cr - CR{"(RI’ k)
= ER:Q Ev?emm«uzuﬁﬂ (Ck + Clz?l)'r(Rv R)
= ER:Q Cf?(E&]nQKu/zHEU (R, R)) + ERCQ Eule./ﬂ Cll?l'r(RU R).

Comparing this expression to (2.7) and using (2.9), we have

218 [T DA seDeaCi+ e DL, (1) S G
e (X) ke

since we assume that Q| =1 .

II/\

|
c,

IA

Here 7, = {R: (1/24)|R,| < |R,n Q| < (1/2*")|R,|}. The second inequality
follows from our assumption on the properties of the atom a and the funec-
tion @o. Adding (2.16) to (2.14), we have finished the proof.

(iv) = (iii). Suppose @ is in the dual of H'(R% x R%); then by a routine
duality argument, there exists some f,e L* (1 < i < 4) such that ¢ = f, +
H,f,+H,f + H, H,f, where H, is the Hilbert transform in the direc-
tion x,. Thus to prove (iv) = (iii), it suffices to verify (iii) for bounded func-
tions, and Hilbert transforms of bounded functions.

First, if ¢ € L, then for each open set Q, we have P, ¥) = (Pr3)(¢, ¥)
for each (t, y) € R,, where R is some dyadic rectangle contained in Q and
where O = U,_, R. Hence

Lorea Si(P) = E’*C“SS |t ) dtdy ERCQSSRJr | Pxa(E, ¥) I2O—Z—dy

12
= llexsll: = CIQIII¢>||3° .
To verify (iii) for Hilbert transforms of bounded functions, we will actually
prove something stronger. Suppose K is an odd kernel defined on R, which
satisfies || f + K ||, < ¢|| f||, for each fe L*R). For each fe L¥R?), we will
still use f * K to denote the function

(f + K)ay ) = || fo, = @, 2, — a)K@)Kedade,, (@, 2) e R

Then || f * K ||, < ¢| f||, holds also on R®. We will verify (iii) for @ + K for
all bounded functions @. For this purpose, we need the following lemma.

LEMMA 4. Suppose R,, R, are dyadic rectangles with R,e 9 Ry> then
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S3 (P, * K) = cr*(R,, R,)Sh,(P) .

Assuming Lemma 4 for the moment, we can then finish the proof of our
assertion following the same pattern as (i) = (iii) (with Lemma 4 replacing
Lemma 2). Actually suppose f = @ * K with o€ L. For a fixed open set
Q,and Q@ = U, o B let @, = 35, o Pr, P = ¢ — ¢, We have
(2.17) Y rea, SHP x K) S oo« Klp = cllills = cll @5 [0l -

Also applying Lemma 4 and following the same line of proof as in (2.6) and
(2.7), we get

3/2
(2.18) Saco, S¥@. 1 K) S 0 D0, (2) Taica, Si9)

o 1\** k 2
oD (X)) 2 knliel
Adding (2.17) and (2.18), we obtain the desired estimate:

Z;RCQO Sie* K) = Cll@”ﬁolgol .

It remains to prove Lemma 4. The method of proof indicated below is
an easy application of Lemma 1 plus some careful changing of the order of
integration. We will first state two one-variable versions of it.

SuBLEMMA 1. If I, I, are dyadic intervals, I, N I, 2,1 £ L] and
@ is defined on R, then
A 3

. @, 0t i<
Iy Y 1,

<SS<,2>+ | p(r, 2)[* d’;ﬂ) ,

where for each interval I,
1 ={eweriter, ay<in}

Proof.

@K1t = (] o (| K@, + £18) E

2

where
®,..(@) = | wila — @yt — a)da .

A careful examination of the domains of -, v, indicates that for (¢, v) € (1),
(r, z) € (I,), with | I,| < | L,|, we have @, , ,(r + B) = O unless r + B € I; where
I, is some interval with the same center as I, with some fixed enlarged size.
Thus
drdz

pa

(P, * K)(t, ) = “u ) P(r, 2)(K * X1;®,...)(1)

2
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Notice that
| 1K+ 240y = 10,0
2 2

by the kernel property of K. We can then make a routine application of
Lemma 1 and the Schwarz inequality to finish the rest of the proof.

SUBLEMMA 2. If I, I, are dyadic intervals, I, NI, = @. If |L,| < ||
and @ 18 defined on R then

W, 1@ Kot )l % <o (—;f—:) (15, 12tr 2 2r22) .

Proof. Since (@, * K)(t, y) = (1,(+, y) * K)(t), we hgve
|, 1o Kt it < {19y, » K0, v
- Sn |P1,(+, ¥) x K [*(t)dt

< | lou@ vlds .

Since ¢,, is supported on T,, | I,| < | I,|, an examination indicates that P+, )
is supported on I/, if | ,|/2 < y < |I,|. Here I/ is an interval with the same
center, but fixed enlarged size of I,. Say I/ c U._,J. where each J, is a
dyadic interval of the same size as I,; then

1141
W, 1o Kt B < (™ (] 19,0, )2
1) Yy 111119 I Y

=Z () 1., loon o 22

(Y, ot e .
I Il | (Ig) 4 2
The second step in the above estimate follows from the one-dimension version
of Lemma 2.

Combining Sublemmas 1 and 2 above, we could finish the proof of Lemma
4 in the following way.

Assume R, = I, X J,, R, = I, x J,are twodyadic rectangles with R, € _%,.
Then there are four possibilities.

(1) [LI=ILi, PAFSPARE (2) |L|=|L], [Ji] = |,
(3) |L|=zIL{, PAESPAR (4) |L|z|L], [Jil = [, .
We will indicate the proof of possibility (8) here. From the proof it is clear

that case (1) could be proved by applying Sublemma 1 twice, while case (4)
could be proved by applying Sublemma 2 twice. It is also clear case (2) could

IA



DUALITY OF H! WITH BMO ON THE BIDISC 197

be proved similarly to case (3).
Assume |I,| = | L], |J,| £ |J.|; then for each z = (x,, 2,) €R?,

drdz

@19) P = || o e =)
dr,dz,

1

"l’zl(xL - "'1)

- Sguzur (SS<J2)+ Py Ty 2y By (@ = d¢;‘jz2>

dr.dz,

1

SS PryT1y 21y To)Y (% — 71)

where we define ¢,,(z,, %,) = SS " (¢(x1, 2) * ) (TP, (B — 15)(d7d2,/2,) and
(

Pry(Tyy 2y Tp) = (q),z( x,) * n}r,l)(’r) Wlth this notation, for each fixed (¢,, ¥,) €

(J2)+’ let gtz,yz(xl) - ((¢J2(xly ) "/"yz) K)(tz) Then by (2 19),

(Pr, * K)(2, ¥)
B SSRZ <SS(1,)+ 91y 0¥ (A, — By — 7))

= ((gtz,vz)lz * K)(tu Y,) .
Thus we have

drldzl) K(Bl)"l’vl(tl - al)daldﬁ‘

1

b(@a K = | |@n) < Kt v) L
(R4 Y

=10 (0] 1 e, ) 2te) S
CALES (I 4 ” "

by Sublemma 2

I |® SS 2 drdz,\ dtdy,
=0 “mu I ( Iy |9ty [ (s 2) 2, > Ys
_ L SS SS 2 dt,dy,\ drdz,
= 1, Iy 4 < W+ |9t [, 21) Yy ) 2,
3
= e |2 (1], 12atrs 2 )+ K 00 2l 21,
1 (Jo) 4 (J1) 4+ Y, 2,

by Sublemma 1
J,|?

-o[5]
L (Ig) J2
=< er’(R,, R,)S:,(P) .

We have finished the proof of Lemma 4, hence completing the proof of the
theorem.

dr,dz, ) dr.dz,
2, 2,

(SS |¢(’rly zl’ 7'2, zz) |2
(Jg) 4

Remark. If we are willing to assume more smoothness for the function
+ (e.g., ¥ € C* would be enough), the step (iv) = (iii) could be proved more
easily. The following proof was indicated to us by R. Coifman and Y. Meyer.
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Assume + is a function supported on [ —1, 1], satisfying +(0) = 0, and
S (|4#(@)|*/x)dx < o as before. To indicate the dependence on «, write
Py(t, ¥) = (@ * ¥,)(t). Then for @ € L™ we have for each open set Q

Tl 1ovt, P 2L < I l@at, v R
< o 10fliel (| 2 g0y

where 9, = Px5, and & = U,_, R.

Now suppose all the assumptions for + hold except that suppy
[—2% 2*] x [—27, 27] for some integer k, j. Define the open set Q, ; as fol-
lows: For rectangle R C Q, let R,; be the rectangle with the same center
as R, but 2* times length in the z,-direction and 2’ times length in the z,-
direction. Let Q,; = U, o R ;.- Then

@20 D], lovt, vl B = 5, [ (in, e, ) S

< oliplion) (|22 6y

© | 7 2 N
= aieligl (7 F g

To estimate Sp(®) for ® = H, H, (H denotes the Hilbert transform), notice
that

Oy(+, y) = (@ 9,)(+) = @+ H, H, (v,)

=@ x H, (y,)H,,(v,,) = ¢ * H, (), H.,(¥),,

= Py(+, ¥)
where ¥ = H, H, ().

So if we decompose ¥ = 2 ..; i, where each W, ; has support contained

in [—2% 2*] x [~27, 27] and has mean value zero, then we may apply (2.20)
to each W,;. Since the map  — (1/|Q] Y, , Si(®y))” is subadditive, we
can sum over our result for each (%, j) if Sm (|‘if,,,-(x)|2/x)dx decreases fast
enough (say if it is dominated by 2**9). In 01011‘ case, we can actually choose
Wi(x,, ®,) = Wi (x,)¥,(x,) where both ¥,, ¥; have mean value zero, are sup-
ported in [—2% 2*], [—27, 2i] respectively, and have the rapid decrease
property ‘:0 | () |*(da/x) < 2*, which is possible when W € C* and has mean
value zero and compact support.
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III. The John-Nirenberg inequality for BMO

In this section we shall prove that functions in the class BMO are lo-
cally in all the L” classes, and, in fact, in the exponential square-root class

( ie., g e fl < oo). (In Section II we showed that several possible defini-
tions of BMO are equivalent.)

THEOREM (John-Nirenberg). Let @ € BMO, and Q C R* be an open set
with |Q| < . Then

I eo®ellzs < C,1Q  for p< co
where C, depends only on the BMO norm of @ and p.

Proof. The proof proceeds by duality. Let1/» + 1/g = 1and||g||, = 1.
Then

[ S 2o Pr gdwl

I

Sl 0], ot e — 0 LY gayas

= ’Em SSM (t, y)g(t, y) LY

lyZ

= || 1o wlloe, v 4.
S(Q) yy

172

Now we shall construct a bounded, vector-valued function

FR e @, L (Do 2100

in such a way that F(x)e L*(I(x); dtdy/y’y?) and F(z)(t, y) will either be
P(t, y) or 0.
To construct F, let us define

Tal) = {4 ) eRY x RE | — 2] <y, and |R,,019] > L |R,,|

where R, , is the rectangle in R? centered at ¢t with side lengths y, and y,.

Also let us put Si(p)(x) = SSF |P(t, y) [((dtdy/y2y3). With these definitions,
(z)
notice that ¢

... S@@dvda. = (| |ot, 1L < 4)i0)|2)

v 1Y2

(For convenience, assume ||®|[gwo = 1, and A = 1.) Let

Q, = {x e Q[Sa(p)(x) > 10} .
Then

1
Q< =Q.
] < 756 1€
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Notice, again, that

|, suHmdedn, =< || |ow, vl 2L < 0,
Q S(Q;)

J82 1 172
As before let @, = {x € Q,[Sq (®)(x) > 10}. Then |Q,| < (1/100) 2, |.
Continuing in this way we get open sets Q0 Q,>Q, D ... If x€Q, —
Qu.,, (t, ¥) €T(x), then define F(z)(t, y) = @(t, v) if |R., N Q| > (1/2)|R.., |,
and define F‘(x)(t, y)=0if |R,, N Q| = (1/2)|R,,|. Then, by construction,
IF'(x)I < 10 and we have

|y 170 wllae 0] S s 4] 1P wlloe ] S da

1 2
In fact this last inequality is clear, since if (¢, y) € S(Q), there is an in-
teger kso that | R, , N Q.| > (1/2)|R,,,| but |R, , N Qy,| < (1/2)| R,,,|. Aquick
glance at the definition of F‘(x) reveals that if xe R, , — Q,,,, F‘(w)(t, Y) =
@(t, y) so that

S S |F@)t, v)l|ott, )| LY do
reQ JI(x) yy

172

N SL@) [{z € R, | F@)(t, v) = 2(t, w}||2t, »)||9t, v)| f,tzdzy

172

1 didy
z 5 ||, 12 wllo, ] 24

We conclude the proof by noticing that

‘ S | Fa)t, )| |9t, v)| 290Y do
zeQ yy

172

IIA

). oo (o | FX0 0 L) s @ia

Y1Y:
=< 10{|S(9) [ 1een -
Since g € L(R?Y),
IS@lve = 11S(@) [l camn Q77 = A|QV7 .
Note that our proof shows that Y, , ®. is in the Orlicz class ¢*Z since
we have shown that we can integrate ), @, against any function g whose
S function is locally in L!, i.e., for g € L(log® L).
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