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Motivation

Notation
C+ = Upper Half Plane

Λ = {λn} ⊆ C+ ∪ R and EΛ = {e2πiλnt}
H2 := {f ∈ hol(C+) : ‖f ‖2

2 := supy>0

∫
|f (x + iy)|2dx <∞}.

H∞ := {f ∈ hol(C+) : ‖f ‖∞ := supz∈C+ |f (z)| <∞}.

When is EΛ complete in L2([0, a])?

Example 1. (Payley Wiener, 1935)

If Λ ⊆ R,then EΛ is complete in L2([0, a]) if

lim sup
x→∞

# (Λ ∩ (0, x))

x
> a

Example 2. (Beurling Malliavin, 1961)

Set R(Λ) = sup{a : EΛ is complete in L2([0, a])}. Then

R(Λ) = Exterior BM Density of Λ
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Rephrase the Setup

Definition 1. The Payley Wiener Space PWa is the space of entire functions
belonging to L2(R) of exponential type at most 2πa, i.e.

|f (z)| ≤ C exp(2πa|z |)
Then PWa = F

(
L2([−a, a])

)
.

Definition 2. Consider Φ := exp (2πiaz) . The Model Subspace associated to
Φ is

KΦ := H2 	 ΦH2

Then KΦ = exp (iπaz)PWa and KΦ is a reproducing kernel Hilbert space, so for
every z ∈ C+ ∪ R, there is a function kz ∈ KΦ such that

〈f , kz〉KΦ
= f (z) ∀ f ∈ KΦ.

Combining these Facts:

EΛ is not complete in L2([−a, a]) iff ∃ f ∈ L2([−a, a]) such that f ⊥ e2πiλnt ∀n.

iff ∃ f ∈ PWa such that f (λn) = 0 for all n

iff ∃ f ∈ KΦ such that f (λn) = 0 for all n

iff {kλn} is not complete in KΦ.

by Anton Baranov Presented by Kelly Bickel Completeness and Riesz Bases of Reproducing Kernels in Model Subspaces



Review of Model Subspaces

Definition 1. Φ is called inner if Φ ∈ H∞ and

lim
y↘0
|Φ(x + iy)| = 1 a.e. on R.

Definition 2. The Model Subspace associated to Φ is

KΦ := H2 	 ΦH2 = H2 ∩ ΦH2.

Then KΦ is a reproducing kernel Hilbert space with reproducing kernels given by

kw (z) :=
i

2π

1− Φ(w)Φ(z)

z − w̄
∀w ∈ C+.

Definition 3. Φ is meromorphic inner if Φ extends merimorphically to C. Then

Φ(z) = exp (iaz)B(z)

where a ∈ R and B(z) is a Blaschke product whose zeros don’t accumulate on R.

Question: For Φ inner and Λ = {λn} ⊆ C+ ∪ R, when is
K(Λ) := {kλn} complete in KΦ?
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Summary of Results

(1) When is K(Λ) complete in KΦ?

Argument Criterion for Completeness

Application: Stability of Completeness

Perturbing Λ

Perturbing Φ

Density Criterion for Completeness (Meromorphic only)

(2) When is K(Λ) a Riesz basis for KΦ?

Definition: {hn} is a Riesz basis for H if H = Spannhn and there are
A,B > 0 such that for every finite sum:

A
∑
n

|cn|2 ≤

∥∥∥∥∥∑
n

cnhn

∥∥∥∥∥
2

H

≤ B
∑
n

|cn|2

Uses connections between entire functions and meromorphic inner
functions
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Argument Criterion for Completeness 1

arg F denotes the main branch of the argument of F

Π = Poisson measure on R. Specifically

g ∈ L1(Π) if

∫
|g(t)|
1 + t2

dt <∞.

For g ∈ L1(Π) the Hilbert Transform is given by:

g̃(x) =
1

π
lim
ε→0

∫
|x−t|>ε

(
1

x − t
+

t

1 + t2

)
g(t)dt

Theorem 1: Points in C+

Let Λ = {λn} ⊆ C+. Then K(Λ) is not complete in KΦ if and only if ∃
a nonnegative m ∈ L2(R) with logm ∈ L1(Π)

a measurable Z-valued function k and a γ ∈ R
such that

arg Φ− argBΛ = 2l̃ogm + 2πk + γ a.e. on R,

where BΛ is the Blaschke product with zeros {λn}.
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Understanding the Argument Condition

Argument Functions & Hilbert Transforms

If O is outer in H2, there is a nonnegative m ∈ L2(R) with logm ∈ L1(Π)
such that

O(t) = exp
(

logm(t) + i ˜logm(t)
)

Actually m can be chosen to be |O|. Then, there is a Z-valued k such that

argO = ˜log |O|+ 2πk a.e. on R.

If I is inner, there is a nonnegative m1 ∈ L∞(R) with logm1 ∈ L1(Π) and a
Z-valued k such that

arg I = l̃ogm1 + 2πk + π a.e. on R

and m1 can be taken to be |1− I |.

∴ If f ∈ H2 then f (z) = O(z)I (z) and so

arg f = l̃ogm + 2πk + l̃ogm1 + π = ˜logm1m + 2πk + π,

where m1m ∈ L2(R) with logm ∈ L1(Π) and k is measurable and Z-valued.
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Application

Mainly Increasing Functions

A C 1 function f on R is mainly increasing if there is an increasing sequence
{dn} ⊆ R such that limn→∞ |dn| =∞ and

f (dn+1)− f (dn) ≈ 1

There is a constant C such that

sup
s,t∈(dn,dn+1)

|f (s)− f (t)| ≤ C ∀n

sup
s,t∈(dn,dn+1)

|f ′(s)− f ′(t)| ≤ C ∀ n.

Every mainly increasing function is of the form 2l̃ogm + 2πk for some
nonnegative m ∈ L2(R) with logm ∈ L1(Π) and measurable Z-valued k.
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Argument Criterion for Completeness 2: Preliminaries

Let Λ = {λn} ⊆ C+ and T = {tn} ⊆ R.

Goal: Study the Completeness of K(Λ) and K(T ) in KΦ.

Assume Φ is analytic in a neighborhood of each tn.

Construct inner function J with {J = 1} = T .

Step 1. Pick ν a Poisson-finite, positive measure supported on T .

ν =
∑
n

νnδtn where νn > 0 and
∑
n

νn
1 + t2

n
<∞

Step 2. Construct a meromorphic Herglotz function using ν.

G(z) =

∫
R

(
1

t − z
− t

1 + t2

)
dν =

∑
n

νn

(
1

tn − z
− tn

1 + t2
n

)
Step 3. Construct meromorphic inner function J using G as follows

J(z) =
G(z)− i

G(z) + i

Then {J = 1} = T and ν is the Clark measure of J.
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Argument Criterion for Completeness 2

Theorem 2: Points in C+ and R
Let Λ = {λn} ⊆ C+ and T = {tn} ⊆ R. Let Φ be an inner function analytic in a
neighborhood of each tn. Then:

K(Λ) ∪ K(T ) is not complete in KΦ if and only if there exist

an inner function J with {J = 1} = T

a nonnegative m ∈ L2(R) with logm ∈ L1(Π)

a measurable Z-valued function k and a γ ∈ R
such that

arg Φ− argBΛ − arg J = 2l̃ogm + 2πk + γ a.e. on R,

where BΛ is the Blaschke product with zeros {λn}.

Future Use: Let T ⊆ R and Φ be meromorphic inner. If we find an inner J s.t.

{J = 1} = T and arg Φ− arg J mainly increasing

then K(T ) is not complete in KΦ.

by Anton Baranov Presented by Kelly Bickel Completeness and Riesz Bases of Reproducing Kernels in Model Subspaces



Application: Perturbing Λ

Corollary 1

Let Λ = {λn} ⊆ C+ and M = {µn} ⊆ C+. Assume K(M) is complete in KΦ.

If for some choice of arguments ψΛ of BΛ and ψM of BM , (ψΛ − ψM) ∈ L1(Π) and

(ψΛ − ψM)∼ ∈ L∞(R)

then K(Λ) is also complete in KΦ.

Proof: Assume K(Λ) is not complete. Then

arg Φ− ψΛ = 2l̃ogm + 2πk + γ.

The assumption (ψΛ − ψM)∼ = u ∈ L∞(R) implies

ψΛ − ψM = −ũ = 2l̃ogm1,

for m1 = e−u/2 and u ∈ L∞ ⇒ m1 ∈ L∞ and clearly logm1 ∈ L1(Π). So:

arg Φ− ψM = arg Φ− ψΛ + (ψΛ − ψM) = 2 ˜logm1m + 2πk + γ,

a contradiction.
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Application 2: Perturbing Φ

Alternate Assumption K(Λ) complete ⇒ K(M) complete if

R(t) :=
∑
n

∣∣∣∣λn − µn

t − µn

∣∣∣∣ ∈ L∞(R)

Now: Fix Λ ⊆ C+ and assume Φ and Φo are both inner functions. Then

K(Λ) = The set of reproducing kernels of KΦ corresponding to Λ
Ko(Λ) = the set of reproducing kernels of KΦo corresponding to Λ

Corollary 2

Let Φ and Φo be inner functions such that for a certain choice of their arguments
ψ and ψo , (ψ − ψo) ∈ L1(Π) and

(ψ − ψo)∼ ∈ L∞(R)

Then K(Λ) is complete in KΦ if and only if Ko(Λ) is complete in KΦo .

Proof: The assumption implies: ψ − ψo = 2l̃ogm for a nonnegative m ∈ L2(R)
with logm ∈ L1(Π). Just apply Theorem 2.
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Clark Points

For Φ meromorphic inner, there is an increasing, smooth function ψ(t) such that

Φ(t) = exp(iψ(t)) on R.

Definition 1. Assume Φ− 1 6∈ L2(R) and define the set S = {sn} ⊆ R by

ψ(sn) = 2πn ∀ n.

The set of reproducing kernels {ksn} is an orthogonal basis for KΦ and is called a
de Branges-Clark basis.

The set {sn} is simultaneously “large” and “small:”

(1) {sn} is a set of uniqueness ( {ksn} is complete.)

f (z) =
∑
n

f (sn)

‖ksn‖2
2

ksn(z) =
∑
n

〈
f ,

ksn
‖ksn‖2

〉
ksn(z)

‖ksn‖2
.

(2) {sn} is a complete interpolating set. I.e, if {cn} satisfies∑
n

|cn|2

‖ksn‖2
2

<∞ ⇒ ∃ f ∈ KΦ with f (sn) = cn.
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Density Criterion: Use Clark Points

Main Idea

If T = {tn} is much denser then S ⇒ K(T ) is complete in KΦ.

If T = {tn} is much sparser then S ⇒ K(T ) is not complete in KΦ.

Definition 1. Upper and Lower Densities of T of Length r :

D+(T , r) = sup
n

#{m : tm ∈ [sn, sn+r )} and D−(T , r) = inf
n

#{m : tm ∈ [sn, sn+r )}

Definition 2. Upper and Lower Densities of T :

D+(T ) = lim
r→∞

D+(T , r)

r
and D−(T ) = lim

r→∞

D−(T , r)

r

Rigorous Idea

D−(T ) > 1⇒ K(T ) is complete in KΦ.

D+(T ) < 1⇒ K(T ) is not complete in KΦ.
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Density Criterion for Completeness

Theorem 3: Density for Points in R
Assume Φ is meromorphic, inner and Φ′ ∈ L∞(R). Further, assume {sn} satisfy

sup
n

∣∣∣∣∣∣
∑
k 6=n

(
1

sn − sk
+

sk
1 + s2

k

)∣∣∣∣∣∣ <∞
Taking D+,D−, and T as before:

D−(T ) > 1⇒ K(T ) is complete in KΦ.

D+(T ) < 1⇒ K(T ) is not complete in KΦ.

Φ′ ∈ L∞(R) implies that infn (sn+1 − sn) > 0 since∫ sn+1

sn

|Φ′(t)|dt =

∫ sn+1

sn

ψ′(t)dt = 2π.

The “S” Condition is satisfied if

{sn} is sufficiently sparse, e.g. supn

∑
n 6=k |sn − sk |−1 <∞.

{sn} is sufficiently symmetric, e.g. sn = 2πn/a
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Riesz Basis Criterion: Preliminaries

Λ = {λn} is a sampling set of KΦ if there are A,B > 0 such that

A‖f ‖2
2 ≤

∑ |f (λn)|2

‖kλn‖2
2

≤ B‖f ‖2
2 ∀f ∈ KΦ.

K(Λ) is a Riesz basis is a stronger condition: For every sequence {cn} such
that ∑ |cn|2

‖kλn‖2
2

<∞ ⇒ ∃ unique f ∈ KΦ s.t. f (λn) = cn

and ‖f ‖2
2 ≈

∑
|cn|2/‖kλn‖2

2. Λ is called a complete interpolating set.

Theorem (Hruscev, Nikolski, & Pavlov, 1981)

Let Φ be an inner function and Λ = {λn} ⊆ C+ such that supn |Φ(λn)| < 1. Then
K(Λ) is a Riesz basis for KΦ if and only if Λ satisfies the Carleson Interpolation
condition

inf
k∈Z

∏
n 6=k

∣∣∣∣λk − λnλk − λ̄n

∣∣∣∣ ≥ δ > 0

and TΦBΛ
is invertible.
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Hermite-Biehler Functions

Definition Let E be an entire function such that

|E (z)| > |E (z̄)| ∀ z ∈ C+.

Then E is called a Hermite-Biehler function and Φ defined by

Φ(z) :=
E∗(z)

E (z)
=

E (z̄)

E (z)
is meromorphic inner.

If Φ is meromorphic inner, then Φ = E∗/E .

For Φ(z) = exp(aiz), then Φ = E∗/E , where E (z) = exp(−iaz/2).

For BΛ a meromorphic Blaschke product, write

BΛ(z) =
∏
n

1− z/λn

1− z/λ̄n
z 6∈ Λ.

For each λn define:

En(z) =

(
1− z

λ̄n

)
exp

(
Re

[
1

λ̄n

]
z + · · ·+ Re

[
1

λ̄nn

]
zn

n

)
Then E (z) :=

∏
En(z) is entire and BΛ = E∗/E .

by Anton Baranov Presented by Kelly Bickel Completeness and Riesz Bases of Reproducing Kernels in Model Subspaces



de Branges Spaces & Model Spaces

Definition. Let E be an entire function such that

|E (z)| > |E (z̄)| ∀ z ∈ C+.

The de Branges Space associated to E, H(E ) is

H(E ) := {entire functions F : F/E ,F ∗/E ∈ H2}.

Then H(E ) is a (reproducing kernel) Hilbert space with norm

‖F‖E = ‖F/E‖2

Connection Between Model Spaces & de Branges Spaces

Let Φ := E∗/E . Then

F 7→ F/E is a unitary operator from H(E ) onto KΦ.

Specifically

F ∈ H(E )⇒ F/E ,F ∗/E ∈ H2 Show: ΦF̄/Ē ∈ H2

F/E ∈ KΦ ⇒ F/E ∈ H2,F ∗/E ∈ L2 Show: F ∗/E ⊥ H2,F is entire
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Riesz Basis Criterion

Theorem 3

Let Φ = E∗/E , where E ∈ HB be meromorphic inner and let T = {tn} ⊆ R.

Then K(T ) is a Riesz Basis for KΦ if and only if there is a meromorphic inner
Φ1 = E∗1 /E1 such that

(1) H(E ) = H(E1) as sets with equivalent norms

(2) T = {Φ1 = 1} and Φ1 − 1 6∈ L2(R)

Observation: (2) says {k1
tn} is a de Branges-Clark basis for KΦ1 .

Idea of the Proof: (⇐)

{k1
tn} is a Riesz basis for KΦ1 .

T is a complete interpolation set for KΦ1

Reinterpret the interpolation statement in terms of the norm of H(E1).

Use norm equivalency to obtain the result for H(E ) (and KΦ).
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Riesz Basis Criterion II

(⇒) Use the following result by Ortega-Cerda and Seip:

Theorem 4

Let Φ = E∗/E and let T = {tn} ⊆ R. If T is a sampling set for KΦ, then there
exist entire functions E1 and E2 where E1 ∈ HB and E2 ∈ HB or is constant s.t.:

(1) H(E ) = H(E1) with norm equivalence.

(2) If Φ1 = E∗1 /E1 and Φ2 = E∗2 /E2, then {Φ1Φ2 = 1} = T .

(3) (1− Φ1Φ2) 6∈ L2(R)

Proof Strategy: Show E2 is constant

Decompose H(E1E2) = E2H(E1)⊕ E∗1H(E2)

Show T satisfies interpolation property for E2H(E1). ( & by assumption for
H(E1E2).)

This will imply H(E2) = {0}.
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H(E ) = H(E1)?

Observation: If |E (z)| ≈ |E1(z)| for all z ∈ C+ ∪ R, then H(E ) = H(E1) as sets
with equivalent norms.

Example: The Frostman Shift Let Φ be inner and |ζ| < 1. Define

Φ1 :=
Φ− ζ

1− ζ̄Φ
.

IF Φ = E∗/E , then Φ1 = E∗1 /E1, where E1 = E − ζ̄E∗.

Theorem 5

Let Φ, Φ1 be meromorphic inner with increasing arguments ψ,ψ1. Assume
(ψ − ψ1) ∈ L1(Π).

Then there are entire functions E1,E ∈ HB such that Φ = E∗/E and Φ1 = E∗1 /E1

and
|E (z)| ≈ |E1(z)| ∀ z ∈ C+ ∪ R

if and only if
(ψ − ψ1)∼ ∈ L∞(R).
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Corollaries

Corollary 1

Let Φ be meromorphic inner with an increasing argument ψ and let T = {tn} ⊆ R.

Assume that there is an meromorphic inner Φ1 with an increasing branch of its
argument ψ1 such that

(1) (ψ − ψ1) ∈ L1(Π) and (ψ − ψ1)∼ ∈ L∞(R)

(2) T = {Φ1 = 1} and (Φ1 − 1) 6∈ L2(R).

Then K(T ) is a Riesz basis for KΦ.

Corollary 2

Let Φ, Φ0 be meromorphic inner functions with increasing branches of arguments
ψ,ψ0. Let T = {tn} ⊆ R. Assume (ψ − ψ0) ∈ L1(Π) and

(ψ − ψ0)∼ ∈ L∞(R).

Then K(T ) is a Riesz basis for KΦ iff K0(T ) is a Riesz basis for KΦ0 .
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