Completeness and Riesz Bases of Reproducing Kernels in Model Subspaces

by Anton Baranov Presented by Kelly Bickel

Internet Analysis Seminar August 8, 2013

Motivation

Notation

- $\bullet \ \mathbb{C}^+ = \mathsf{Upper} \ \mathsf{Half} \ \mathsf{Plane}$
- $\Lambda = \{\lambda_n\} \subseteq \mathbb{C}^+ \cup \mathbb{R} \text{ and } E_{\Lambda} = \{e^{2\pi i \lambda_n t}\}$
- $H^2 := \{ f \in \mathsf{hol}(\mathbb{C}^+) : \|f\|_2^2 := \sup_{y>0} \int |f(x+iy)|^2 dx < \infty \}.$
- $H^{\infty} := \{ f \in \mathsf{hol}(\mathbb{C}^+) : \|f\|_{\infty} := \sup_{z \in \mathbb{C}^+} |f(z)| < \infty \}.$

When is E_{Λ} complete in $L^2([0, a])$?

Example 1. (Payley Wiener, 1935)

If $\Lambda \subseteq \mathbb{R}$, then E_{Λ} is complete in $L^2([0, a])$ if

$$\limsup_{x\to\infty}\frac{\#\left(\Lambda\cap(0,x)\right)}{x}>a$$

Example 2. (Beurling Malliavin, 1961) Set $R(\Lambda) = \sup\{a : E_{\Lambda} \text{ is complete in } L^2([0, a])\}$. Then $R(\Lambda) = \text{ Exterior BM Density of } \Lambda$

Rephrase the Setup

Definition 1. The **Payley Wiener Space** PW_a is the space of entire functions belonging to $L^2(\mathbb{R})$ of exponential type at most $2\pi a$, i.e.

$$|f(z)| \leq C \, \exp(2\pi a |z|)$$

Then $PW_a = \mathcal{F}(L^2([-a, a]))$.

Definition 2. Consider $\Phi := \exp(2\pi i a z)$. The **Model Subspace associated to** Φ is

$$K_{\Phi} := H^2 \ominus \Phi H^2$$

Then $K_{\Phi} = \exp(i\pi az) PW_a$ and K_{Φ} is a reproducing kernel Hilbert space, so for every $z \in \mathbb{C}^+ \cup \mathbb{R}$, there is a function $k_z \in K_{\Phi}$ such that

$$\langle f, k_z \rangle_{K_{\Phi}} = f(z) \qquad \forall f \in K_{\Phi}.$$

Combining these Facts:

 E_{Λ} is not complete in $L^{2}([-a, a])$ iff $\exists f \in L^{2}([-a, a])$ such that $f \perp e^{2\pi i \lambda_{n} t} \forall n$. iff $\exists f \in PW_{a}$ such that $f(\lambda_{n}) = 0$ for all niff $\exists f \in K_{\Phi}$ such that $f(\lambda_{n}) = 0$ for all niff $\{k_{\lambda_{n}}\}$ is not complete in K_{Φ} .

Review of Model Subspaces

Definition 1. Φ is called **inner** if $\Phi \in H^{\infty}$ and

$$\lim_{y\searrow 0} |\Phi(x+iy)| = 1 \quad a.e. \text{ on } \mathbb{R}.$$

Definition 2. The Model Subspace associated to Φ is

$$K_{\Phi} := H^2 \ominus \Phi H^2 = H^2 \cap \Phi \overline{H^2}.$$

Then K_{Φ} is a reproducing kernel Hilbert space with reproducing kernels given by

$$k_w(z) := rac{i}{2\pi} rac{1 - \overline{\Phi(w)} \Phi(z)}{z - ar{w}} \qquad orall w \in \mathbb{C}^+$$

Definition 3. Φ is **meromorphic inner** if Φ extends merimorphically to \mathbb{C} . Then

$$\Phi(z) = \exp(iaz) B(z)$$

where $a \in \mathbb{R}$ and B(z) is a Blaschke product whose zeros don't accumulate on \mathbb{R} .

Question: For
$$\Phi$$
 inner and $\Lambda = \{\lambda_n\} \subseteq \mathbb{C}^+ \cup \mathbb{R}$, when is $\mathcal{K}(\Lambda) := \{k_{\lambda_n}\}$ complete in \mathcal{K}_{Φ} ?

Summary of Results

(1) When is $\mathcal{K}(\Lambda)$ complete in K_{Φ} ?

- Argument Criterion for Completeness
- Application: Stability of Completeness
 - \bullet Perturbing Λ
 - Perturbing Φ
- Density Criterion for Completeness (Meromorphic only)

(2) When is $\mathcal{K}(\Lambda)$ a Riesz basis for K_{Φ} ?

• Definition: $\{h_n\}$ is a **Riesz basis** for H if $H = \overline{\text{Span}_n h_n}$ and there are A, B > 0 such that for every finite sum:

$$A\sum_{n} |c_{n}|^{2} \leq \left\|\sum_{n} c_{n}h_{n}\right\|_{H}^{2} \leq B\sum_{n} |c_{n}|^{2}$$

• Uses connections between entire functions and meromorphic inner functions

Argument Criterion for Completeness 1

- $\arg F$ denotes the main branch of the argument of F
- Π = Poisson measure on \mathbb{R} . Specifically

$$g\in L^1(\Pi) \quad ext{if} \quad \int rac{|g(t)|}{1+t^2} dt <\infty.$$

• For $g \in L^1(\Pi)$ the **Hilbert Transform** is given by:

$$\tilde{g}(x) = rac{1}{\pi} \lim_{\epsilon \to 0} \int_{|x-t| > \epsilon} \left(rac{1}{x-t} + rac{t}{1+t^2}
ight) g(t) dt$$

Theorem 1: Points in \mathbb{C}^+

Let $\Lambda = \{\lambda_n\} \subseteq \mathbb{C}^+$. Then $\mathcal{K}(\Lambda)$ is *not complete* in K_{Φ} if and only if \exists

- a nonnegative $m \in L^2(\mathbb{R})$ with log $m \in L^1(\Pi)$
- a measurable \mathbb{Z} -valued function k and a $\gamma \in \mathbb{R}$

such that

$$\arg \Phi - \arg B_{\Lambda} = 2\widetilde{\log m} + 2\pi k + \gamma$$
 a.e. on \mathbb{R}_{+}

where B_{Λ} is the Blaschke product with zeros $\{\lambda_n\}$.

Understanding the Argument Condition

Argument Functions & Hilbert Transforms

• If O is outer in H^2 , there is a nonnegative $m \in L^2(\mathbb{R})$ with $\log m \in L^1(\Pi)$ such that

$$O(t) = \exp\left(\log m(t) + i \log m(t)\right)$$

Actually *m* can be chosen to be |O|. Then, there is a \mathbb{Z} -valued *k* such that

$$\arg O = \widetilde{\log |O|} + 2\pi k$$
 a.e. on \mathbb{R} .

• If I is inner, there is a nonnegative $m_1 \in L^{\infty}(\mathbb{R})$ with log $m_1 \in L^1(\Pi)$ and a \mathbb{Z} -valued k such that

arg
$$\textit{I} = \widecheck{\log m_1} + 2\pi k + \pi \;\;$$
 a.e. on $\mathbb R$

and m_1 can be taken to be |1 - I|.

 \therefore If $f \in H^2$ then f(z) = O(z)I(z) and so

$$\arg f = \widetilde{\log m} + 2\pi k + \widetilde{\log m_1} + \pi = \widetilde{\log m_1}m + 2\pi k + \pi,$$

where $m_1m \in L^2(\mathbb{R})$ with log $m \in L^1(\Pi)$ and k is measurable and \mathbb{Z} -valued.

Mainly Increasing Functions

A C^1 function f on \mathbb{R} is **mainly increasing** if there is an increasing sequence $\{d_n\} \subseteq \mathbb{R}$ such that $\lim_{n\to\infty} |d_n| = \infty$ and

- $f(d_{n+1}) f(d_n) \approx 1$
- There is a constant C such that

$$\sup_{s,t\in(d_n,d_{n+1})}|f(s)-f(t)|\leq C\quad\forall n$$

$$\sup_{s,t\in(d_n,d_{n+1})}|f'(s)-f'(t)|\leq C\quad\forall n.$$

Every mainly increasing function is of the form $2\widetilde{\log m} + 2\pi k$ for some nonnegative $m \in L^2(\mathbb{R})$ with $\log m \in L^1(\Pi)$ and measurable \mathbb{Z} -valued k.

Argument Criterion for Completeness 2: Preliminaries

Let $\Lambda = \{\lambda_n\} \subseteq \mathbb{C}^+$ and $T = \{t_n\} \subseteq \mathbb{R}$.

Goal: Study the Completeness of $\mathcal{K}(\Lambda)$ and $\mathcal{K}(\mathcal{T})$ in \mathcal{K}_{Φ} .

- Assume Φ is analytic in a neighborhood of each t_n .
- Construct inner function J with $\{J = 1\} = T$.

Step 1. Pick ν a Poisson-finite, positive measure supported on T.

$$\nu = \sum_n \nu_n \delta_{t_n} \quad \text{where} \quad \nu_n > 0 \quad \text{ and } \quad \sum_n \frac{\nu_n}{1+t_n^2} < \infty$$

Step 2. Construct a meromorphic Herglotz function using ν .

$$G(z) = \int_{\mathbb{R}} \left(\frac{1}{t-z} - \frac{t}{1+t^2} \right) d\nu = \sum_n \nu_n \left(\frac{1}{t_n - z} - \frac{t_n}{1+t_n^2} \right)$$

Step 3. Construct meromorphic inner function J using G as follows

$$J(z) = \frac{G(z) - i}{G(z) + i}$$

Then $\{J = 1\} = T$ and ν is the Clark measure of J.

Argument Criterion for Completeness 2

Theorem 2: Points in \mathbb{C}^+ and \mathbb{R}

Let $\Lambda = \{\lambda_n\} \subseteq \mathbb{C}^+$ and $T = \{t_n\} \subseteq \mathbb{R}$. Let Φ be an inner function analytic in a neighborhood of each t_n . Then:

 $\mathcal{K}(\Lambda) \cup \mathcal{K}(T)$ is *not complete* in K_{Φ} if and only if there exist

- an inner function J with $\{J = 1\} = T$
- a nonnegative $m \in L^2(\mathbb{R})$ with log $m \in L^1(\Pi)$
- a measurable $\mathbb Z\text{-valued}$ function k and a $\gamma\in\mathbb R$

such that

$$\arg \Phi - \arg B_{\Lambda} - \arg J = 2\widetilde{\log m} + 2\pi k + \gamma$$
 a.e. on \mathbb{R}_{+}

where B_{Λ} is the Blaschke product with zeros $\{\lambda_n\}$.

Future Use: Let $T \subseteq \mathbb{R}$ and Φ be meromorphic inner. If we find an inner J s.t.

$${J = 1} = T$$
 and $\arg \Phi - \arg J$ mainly increasing

then $\mathcal{K}(\mathcal{T})$ is not complete in K_{Φ} .

Corollary 1

Let $\Lambda = \{\lambda_n\} \subseteq \mathbb{C}^+$ and $M = \{\mu_n\} \subseteq \mathbb{C}^+$. Assume $\mathcal{K}(M)$ is complete in \mathcal{K}_{Φ} .

If for some choice of arguments ψ_{Λ} of B_{Λ} and ψ_{M} of B_{M} , $(\psi_{\Lambda} - \psi_{M}) \in L^{1}(\Pi)$ and

$$(\psi_{\Lambda} - \psi_{M})^{\sim} \in L^{\infty}(\mathbb{R})$$

then $\mathcal{K}(\Lambda)$ is also complete in K_{Φ} .

Proof: Assume $\mathcal{K}(\Lambda)$ is not complete. Then

$$\arg \Phi - \psi_{\Lambda} = 2\widetilde{\log m} + 2\pi k + \gamma.$$

The assumption $(\psi_{\Lambda} - \psi_{M})^{\sim} = u \in L^{\infty}(\mathbb{R})$ implies

$$\psi_{\Lambda} - \psi_{M} = -\tilde{u} = 2\widetilde{\log m_{1}},$$

for $m_1 = e^{-u/2}$ and $u \in L^{\infty} \Rightarrow m_1 \in L^{\infty}$ and clearly log $m_1 \in L^1(\Pi)$. So:

$$\operatorname{arg} \Phi - \psi_{\mathcal{M}} = \operatorname{arg} \Phi - \psi_{\Lambda} + (\psi_{\Lambda} - \psi_{\mathcal{M}}) = 2 \widetilde{\log m_1 m} + 2\pi k + \gamma_{\mathcal{M}}$$

a contradiction.

Application 2: Perturbing Φ

Alternate Assumption $\mathcal{K}(\Lambda)$ complete $\Rightarrow \mathcal{K}(M)$ complete if

$$R(t) := \sum_{n} \left| \frac{\lambda_n - \mu_n}{t - \mu_n} \right| \in L^{\infty}(\mathbb{R})$$

Now: Fix $\Lambda \subseteq \mathbb{C}^+$ and assume Φ and Φ° are both inner functions. Then $\mathcal{K}(\Lambda) =$ The set of reproducing kernels of K_{Φ} corresponding to Λ $\mathcal{K}^\circ(\Lambda) =$ the set of reproducing kernels of K_{Φ° corresponding to Λ

Corollary 2

Let Φ and Φ^o be inner functions such that for a certain choice of their arguments ψ and ψ^o , $(\psi - \psi^o) \in L^1(\Pi)$ and

$$(\psi - \psi^{o})^{\sim} \in L^{\infty}(\mathbb{R})$$

Then $\mathcal{K}(\Lambda)$ is complete in \mathcal{K}_{Φ} if and only if $\mathcal{K}^{o}(\Lambda)$ is complete in $\mathcal{K}_{\Phi^{o}}$.

Proof: The assumption implies: $\psi - \psi^o = 2\widetilde{\log m}$ for a nonnegative $m \in L^2(\mathbb{R})$ with log $m \in L^1(\Pi)$. Just apply Theorem 2.

Clark Points

For Φ meromorphic inner, there is an increasing, smooth function $\psi(t)$ such that $\Phi(t) = \exp(i\psi(t))$ on \mathbb{R} .

Definition 1. Assume $\Phi - 1 \notin L^2(\mathbb{R})$ and define the set $S = \{s_n\} \subseteq \mathbb{R}$ by

$$\psi(s_n)=2\pi n \quad \forall n.$$

The set of reproducing kernels $\{k_{s_n}\}$ is an orthogonal basis for K_{Φ} and is called a **de Branges-Clark basis.**

The set $\{s_n\}$ is simultaneously "large" and "small:"

(1) $\{s_n\}$ is a set of uniqueness ($\{k_{s_n}\}$ is complete.)

$$f(z) = \sum_{n} \frac{f(s_{n})}{\|k_{s_{n}}\|_{2}^{2}} k_{s_{n}}(z) = \sum_{n} \left\langle f, \frac{k_{s_{n}}}{\|k_{s_{n}}\|_{2}} \right\rangle \frac{k_{s_{n}}(z)}{\|k_{s_{n}}\|_{2}}.$$

(2) $\{s_n\}$ is a complete interpolating set. I.e, if $\{c_n\}$ satisfies

$$\sum_n \frac{|c_n|^2}{\|k_{s_n}\|_2^2} < \infty \; \Rightarrow \; \exists \; f \in K_{\Phi} \; \text{with} \; f(s_n) = c_n.$$

Density Criterion: Use Clark Points

Main Idea

- If $T = \{t_n\}$ is much denser then $S \Rightarrow \mathcal{K}(T)$ is complete in K_{Φ} .
- If $T = \{t_n\}$ is much sparser then $S \Rightarrow \mathcal{K}(T)$ is not complete in K_{Φ} .

Definition 1. Upper and Lower Densities of *T* of Length *r*:

$$D_+(T,r) = \sup_n \#\{m : t_m \in [s_n, s_{n+r})\}$$
 and $D_-(T,r) = \inf_n \#\{m : t_m \in [s_n, s_{n+r})\}$

Definition 2. Upper and Lower Densities of *T*:

$$D_+(T) = \lim_{r o \infty} rac{D_+(T,r)}{r}$$
 and $D_-(T) = \lim_{r o \infty} rac{D_-(T,r)}{r}$

Rigorous Idea

•
$$D_{-}(T) > 1 \Rightarrow \mathcal{K}(T)$$
 is complete in K_{Φ} .

• $D_+(T) < 1 \Rightarrow \mathcal{K}(T)$ is not complete in K_{Φ} .

Density Criterion for Completeness

Theorem 3: Density for Points in \mathbb{R}

Assume Φ is meromorphic, inner and $\Phi' \in L^{\infty}(\mathbb{R})$. Further, assume $\{s_n\}$ satisfy

$$\sup_{n} \left| \sum_{k \neq n} \left(\frac{1}{s_n - s_k} + \frac{s_k}{1 + s_k^2} \right) \right| < \infty$$

Taking D_+, D_- , and T as before:

•
$$D_{-}(T) > 1 \Rightarrow \mathcal{K}(T)$$
 is complete in K_{Φ} .

• $D_+(T) < 1 \Rightarrow \mathcal{K}(T)$ is not complete in K_{Φ} .

 $\Phi' \in L^{\infty}(\mathbb{R})$ implies that $\inf_n (s_{n+1} - s_n) > 0$ since

$$\int_{s_n}^{s_{n+1}} |\Phi'(t)| dt = \int_{s_n}^{s_{n+1}} \psi'(t) dt = 2\pi.$$

The "S" Condition is satisfied if

- $\{s_n\}$ is sufficiently sparse, e.g. $\sup_n \sum_{n \neq k} |s_n s_k|^{-1} < \infty$.
- $\{s_n\}$ is sufficiently symmetric, e.g. $s_n = 2\pi n/a$

Riesz Basis Criterion: Preliminaries

•
$$\Lambda = \{\lambda_n\}$$
 is a sampling set of K_{Φ} if there are $A, B > 0$ such that
 $A \|f\|_2^2 \le \sum \frac{|f(\lambda_n)|^2}{\|k_{\lambda_n}\|_2^2} \le B \|f\|_2^2 \quad \forall f \in K_{\Phi}.$

K(Λ) is a *Riesz basis* is a stronger condition: For every sequence {*c_n*} such that
 that

$$\sum \frac{|c_n|^2}{\|k_{\lambda_n}\|_2^2} < \infty \implies \exists \text{ unique } f \in K_{\Phi} \text{ s.t. } f(\lambda_n) = c_n$$

and $\|f\|_2^2 \approx \sum |c_n|^2 / \|k_{\lambda_n}\|_2^2$. A is called a complete interpolating set.

Theorem (Hruscev, Nikolski, & Pavlov, 1981)

Let Φ be an inner function and $\Lambda = \{\lambda_n\} \subseteq \mathbb{C}^+$ such that $\sup_n |\Phi(\lambda_n)| < 1$. Then $\mathcal{K}(\Lambda)$ is a Riesz basis for \mathcal{K}_{Φ} if and only if Λ satisfies the Carleson Interpolation condition

$$\inf_{k\in\mathbb{Z}}\prod_{n\neq k}\left|\frac{\lambda_k-\lambda_n}{\lambda_k-\bar{\lambda}_n}\right|\geq\delta>0$$

and $T_{\Phi \overline{B_{\Lambda}}}$ is invertible.

Hermite-Biehler Functions

Definition Let E be an entire function such that

$$|E(z)| > |E(\bar{z})| \qquad \forall \ z \in \mathbb{C}^+.$$

Then *E* is called a *Hermite-Biehler* function and Φ defined by

$$\Phi(z) := rac{E^*(z)}{E(z)} = rac{\overline{E(ar{z})}}{E(z)}$$
 is meromorphic inner.

If Φ is meromorphic inner, then $\Phi = E^*/E$.

• For $\Phi(z) = \exp(aiz)$, then $\Phi = E^*/E$, where $E(z) = \exp(-iaz/2)$.

• For B_{Λ} a meromorphic Blaschke product, write

$$B_{\Lambda}(z) = \prod_{n} \frac{1-z/\lambda_{n}}{1-z/\overline{\lambda_{n}}} \qquad z \notin \Lambda.$$

For each λ_n define:

$$E_n(z) = \left(1 - \frac{z}{\bar{\lambda_n}}\right) \exp\left(\operatorname{Re}\left[\frac{1}{\bar{\lambda}_n}\right] z + \dots + \operatorname{Re}\left[\frac{1}{\bar{\lambda}_n^n}\right] \frac{z^n}{n}\right)$$

Then $E(z) := \prod E_n(z)$ is entire and $B_{\Lambda} = E^*/E$.

de Branges Spaces & Model Spaces

Definition. Let E be an entire function such that

$$|E(z)| > |E(\bar{z})| \qquad \forall \ z \in \mathbb{C}^+.$$

The **de Branges Space associated to E**, $\mathcal{H}(E)$ is

$$\mathcal{H}(E) := \{$$
entire functions $F : F/E, F^*/E \in H^2 \}.$

Then $\mathcal{H}(E)$ is a (reproducing kernel) Hilbert space with norm

 $||F||_E = ||F/E||_2$

Connection Between Model Spaces & de Branges Spaces Let $\Phi := E^*/E$. Then

 $F \mapsto F/E$ is a unitary operator from $\mathcal{H}(E)$ onto K_{Φ} .

Specifically

$$\begin{split} F &\in \mathcal{H}(E) \Rightarrow F/E, F^*/E \in H^2 \qquad \text{Show:} \quad \Phi \bar{F}/\bar{E} \in H^2 \\ F/E &\in K_{\Phi} \Rightarrow F/E \in H^2, F^*/E \in L^2 \quad \text{Show:} \quad F^*/E \perp \overline{H^2}, F \text{ is entire} \end{split}$$

Riesz Basis Criterion

Theorem 3

Let $\Phi = E^*/E$, where $E \in HB$ be meromorphic inner and let $T = \{t_n\} \subseteq \mathbb{R}$.

Then $\mathcal{K}(T)$ is a Riesz Basis for K_{Φ} if and only if there is a meromorphic inner $\Phi_1 = E_1^*/E_1$ such that (1) $\mathcal{H}(E) = \mathcal{H}(E_1)$ as sets with equivalent norms (2) $T = \{\Phi_1 = 1\}$ and $\Phi_1 - 1 \notin L^2(\mathbb{R})$

Observation: (2) says $\{k_{t_n}^1\}$ is a de Branges-Clark basis for K_{Φ_1} .

Idea of the Proof: (\Leftarrow)

- $\{k_{t_n}^1\}$ is a Riesz basis for K_{Φ_1} .
- T is a complete interpolation set for K_{Φ_1}
- Reinterpret the interpolation statement in terms of the norm of $\mathcal{H}(E_1)$.
- Use norm equivalency to obtain the result for $\mathcal{H}(E)$ (and K_{Φ}).

Riesz Basis Criterion II

 (\Rightarrow) Use the following result by Ortega-Cerda and Seip:

Theorem 4

Let $\Phi = E^*/E$ and let $T = \{t_n\} \subseteq \mathbb{R}$. If T is a sampling set for K_{Φ} , then there exist entire functions E_1 and E_2 where $E_1 \in HB$ and $E_2 \in HB$ or is constant s.t.: (1) $\mathcal{H}(E) = \mathcal{H}(E_1)$ with norm equivalence. (2) If $\Phi_1 = E_1^*/E_1$ and $\Phi_2 = E_2^*/E_2$, then $\{\Phi_1\Phi_2 = 1\} = T$. (3) $(1 - \Phi_1\Phi_2) \notin L^2(\mathbb{R})$

Proof Strategy: Show E_2 is constant

- Decompose $\mathcal{H}(E_1E_2) = E_2\mathcal{H}(E_1) \oplus E_1^*\mathcal{H}(E_2)$
- Show T satisfies interpolation property for $E_2\mathcal{H}(E_1)$. (& by assumption for $\mathcal{H}(E_1E_2)$.)
- This will imply $\mathcal{H}(E_2) = \{0\}.$

$\mathcal{H}(E) = \mathcal{H}(E_1)$?

Observation: If $|E(z)| \approx |E_1(z)|$ for all $z \in \mathbb{C}^+ \cup \mathbb{R}$, then $\mathcal{H}(E) = \mathcal{H}(E_1)$ as sets with equivalent norms.

Example: The Frostman Shift Let Φ be inner and $|\zeta| < 1$. Define

$$\Phi_1 := \frac{\Phi - \zeta}{1 - \overline{\zeta} \Phi}.$$

IF $\Phi = E^*/E$, then $\Phi_1 = E_1^*/E_1$, where $E_1 = E - \overline{\zeta}E^*$.

Theorem 5

Let Φ , Φ_1 be meromorphic inner with increasing arguments ψ, ψ_1 . Assume $(\psi - \psi_1) \in L^1(\Pi)$.

Then there are entire functions $E_1, E \in HB$ such that $\Phi = E^*/E$ and $\Phi_1 = E_1^*/E_1$ and

$$|E(z)| pprox |E_1(z)| \qquad orall \ z \in \mathbb{C}^+ \cup \mathbb{R}$$

if and only if

$$(\psi - \psi_1)^{\sim} \in L^{\infty}(\mathbb{R}).$$

Corollaries

Corollary 1

Let Φ be meromorphic inner with an increasing argument ψ and let $T = \{t_n\} \subseteq \mathbb{R}$.

Assume that there is an meromorphic inner Φ_1 with an increasing branch of its argument ψ_1 such that

(1)
$$(\psi - \psi_1) \in L^1(\Pi)$$
 and $(\psi - \psi_1)^{\sim} \in L^{\infty}(\mathbb{R})$
(2) $T = \{\Phi_1 = 1\}$ and $(\Phi_1 - 1) \notin L^2(\mathbb{R})$.

Then $\mathcal{K}(\mathcal{T})$ is a Riesz basis for K_{Φ} .

Corollary 2

Let Φ , Φ^0 be meromorphic inner functions with increasing branches of arguments ψ, ψ^0 . Let $T = \{t_n\} \subseteq \mathbb{R}$. Assume $(\psi - \psi^0) \in L^1(\Pi)$ and

$$(\psi - \psi^0)^\sim \in L^\infty(\mathbb{R}).$$

Then $\mathcal{K}(\mathcal{T})$ is a Riesz basis for \mathcal{K}_{Φ} iff $\mathcal{K}^{0}(\mathcal{T})$ is a Riesz basis for $\mathcal{K}_{\Phi^{0}}$.