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Abstract. We use the recent approach of N. Makarov and A. Poltoratski to give a
criterion of completeness of systems of reproducing kernels in the model subspaces
KΘ = H2ªΘH2 of the Hardy class H2. As an application we prove new results on
stability of completeness with respect to small perturbations and obtain criteria of
completeness in terms of certain densities. We also obtain a description of systems
of reproducing kernels corresponding to real points which form a Riesz basis in a
given model subspace.
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Introduction

Let Θ be an inner function in the upper half-plane C+, that is, a bounded
analytic function such that lim

y→0+
|Θ(x+iy)| = 1 for almost all x ∈ R with respect to

the Lebesgue measure. With an inner function Θ we associate the model subspace

KΘ = H2 ªΘH2

of the Hardy class H2 in the upper half-plane. These subspaces (and their analogs
for the unit disc) play an outstanding role both in function and operator theory
(see [10, 25, 26]), in particular, in the Sz.-Nagy–Foias model for contractions in
a Hilbert space. Recall that any subspace of H2 coinvariant with respect to the
semigroup of shifts (Ut)t≥0, Utf(x) = eitxf(x), is of the form KΘ for a certain inner
function Θ.

We mention two important particular cases of the model subspaces. If Θ(z) =
exp(iaz), a > 0, then KΘ = exp(iaz/2)PWa/2, where PWa is the Paley–Wiener
space of entire functions of exponential type at most a, whose restrictions to the
real axis R belong to L2(R). It is well known that the space PWa coincides with
the Fourier image of the space of square summable functions supported in the
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interval (−a, a). On the other hand, if B is a Blaschke product with zeros zn of
multiplicities mn, that is,

B(z) =
∏
n

eiαn

(
z − zn

z − zn

)mn

(here αn ∈ R and the factors eiαn ensure the convergence of the product), then the
subspace KB admits a simple geometrical description: it coincides with the closed
linear span in L2(R) of the fractions (z − zn)−k, 1 ≤ k ≤ mn.

We say that Θ is a meromorphic inner function if Θ is meromorphic in the
whole complex plane C. In this case Θ is of the form

Θ(z) = exp(iaz)B(z), (1)

where a ≥ 0 and B is a Blaschke product with zeros tending to infinity. If the
inner function Θ is meromorphic, then each element of the model space KΘ is also
meromorphic and, in particular, admits an analytic continuation across the real
axis. With each meromorphic inner function Θ we may associate an increasing
branch of its argument on the real axis: there exists an increasing C∞ function ϕ
such that Θ(t) = exp(iϕ(t)), t ∈ R. Note also that

ϕ′(t) = |Θ′(t)| = a + 2
∑

n

mnIm zn

|t− zn|2 . (2)

Recall that the function

Kz(ζ) =
i

2π
· 1−Θ(z)Θ(ζ)

ζ − z

is the reproducing kernel of the space KΘ corresponding to the point z ∈ C+, that
is,

f(z) = 〈f,Kz〉L2(R), f ∈ KΘ.

The last equality may be in some cases extended to the real values of z. For
example, if Θ is a meromorphic inner function, then Kx ∈ KΘ for each x ∈ R.
For a general inner function Θ the criterion of the inclusion Kx ∈ KΘ is that
lim

y→0+
|Θ(x+ iy)| = 1 and |Θ′(x)| < ∞ (see [1]); here |Θ′(x)| stands for the modulus

of the angular derivative at the point x.

We consider the following problem: given an inner function Θ, to describe the
sets Λ = {λn} ⊂ C+ such that the system of reproducing kernels K(Λ) = {Kλn} is
complete in KΘ. We will use repeatedly the following obvious but very important
observation:
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the system K(Λ) is complete in KΘ if and only if Λ is a uniqueness set for KΘ,
that is, if the function f is in KΘ and f(λn) = 0 for each n, then f ≡ 0.

In particular, if λn ∈ C+ and the system K(Λ) is not complete, then {λn} is a
Blaschke sequence.

We mention one important example motivating the interest to this problem.
Consider the inner function Θ(z) = exp(2πiz). Then, by the Paley-Wiener the-
orem, the model subspace KΘ coincides with the Fourier image of the space
L2(0, 2π). Moreover, a system of reproducing kernels Kλn in KΘ corresponds to
a system of complex exponentials eiλnt in L2(0, 2π). Completeness of systems of
exponentials is a classical problem having a very long history. A detailed review
of related results may be found in [22, 28]. One of the most deep results concern-
ing this problem is the theorem of A. Beurling and P. Malliavin on the radius of
completeness [8].

An important progress in the completeness problem is due to N. Makarov and
A. Poltoratski [24] who recently obtained a criterion of completeness of systems
of reproducing kernels for the model subspaces generated by meromorphic inner
functions. Their criterion expresses the completeness in terms of an increasing
branch of the argument of a meromorphic function Θ. Using this approach the
authors obtain in [24] a new and essentially simpler proof of the Beurling–Malliavin
theorem. They also relate their results on completeness to differential operator
theory.

Making use of the similar ideas, we obtain here a slightly more general result
on completeness of systems of reproducing kernels which is applicable in the case
of an arbitrary, not necessarily meromorphic, inner function. As a corollary of this
criterion we obtain a new result on stability of the completeness property under
small perturbations of the set Λ and relate the completeness problem to certain
densities.

Another long-standing problem concerning the geometric properties of systems
of reproducing kernels is to describe the sets Λ such that the family K(Λ) is a Riesz
basis in the given model subspace. Recall that a system of vectors {hn} in a Hilbert
space H is said to be a Riesz basis if {hn} is an image of an orthogonal basis under a
bounded and invertible linear operator in H. An equivalent definition is that each
h ∈ H may be represented as an unconditionally convergent series h =

∑
n cnhn

and there exist positive constants A and B such that

A
∑

n

|cn|2‖hn‖2
H ≤

∥∥∥∥∥
∑

n

cnhn

∥∥∥∥∥

2

H

≤ B
∑

n

|cn|2‖hn‖2
H .

In the case when Θ(z) = exp(2πiz) the problem of description of Riesz bases of
reproducing kernels is equivalent to the famous problem of non-harmonic Fourier
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series posed by Paley and Wiener. A solution of this problem was obtained by S.V.
Hruscev, N.K. Nikolski and B.S. Pavlov in [21], where the case of general model
subspaces is also considered and a Riesz bases’ description is obtained under some
additional restrictions (we state these results in Section 2).

In the present article, making use of the results of J. Ortega-Cerda and K. Seip
[27], we describe Riesz bases of reproducing kernels corresponding to real points
in the case of meromorphic inner functions.

1. Main results on completeness

Let Π denote the Poisson measure on R, that is, dΠ(t) = dt
t2+1

. Recall that the
Hilbert transform of a function g ∈ L1(Π) is defined by

g̃(x) = v.p.
1

π

∫

R

(
1

x− t
+

t

t2 + 1

)
g(t)dt.

In what follows we denote by arg Θ the main branch of the argument of Θ, that
is, arg Θ ∈ (−π, π].

The following theorem gives a criterion of completeness of K(Λ) for the case
when Λ ⊂ C+.

Theorem 1.1. Let Λ = {λn} ⊂ C+. Then the system K(Λ) is not complete
in KΘ if and only if there exist a nonnegative function m ∈ L2(R) such that
log m ∈ L1(Π), a measurable integer-valued function k and a real number γ such
that

arg Θ− arg BΛ = 2l̃og m + 2πk + γ, a.e. on R,

where BΛ is the Blaschke product with the zeros {λn}.
An analogous description of non-complete systems is obtained in [24] for mero-

morphic inner functions (where an increasing branch of the argument is consid-
ered). The similar ideas were used in the papers of V.P. Havin and J. Mashreghi
[19, 20] to parametrize the class of the so-called admissible majorants for model
subspaces and to extend the Beurling–Malliavin multiplier theorem to the model
subspaces. Moreover, in [20] a sufficient condition is obtained for a function f to be

represented as f = 2l̃og m+2πk for some m and k as above: such a representation
takes place if the function f is mainly increasing (see the definition in Section 3).

Now we consider an analogous statement for the case when Λ ⊂ C+ ∪ R.
Namely, let Λ = {λn} ⊂ C+ and let T = {tn} ⊂ R. As above, we denote by BΛ

the Blaschke product with the zeros λn. We also introduce an inner function J
such that

{t ∈ R : J(t) = 1} = T.
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Here J(t) is interpreted in the sense of nontangential boundary values. Such
a function J may be constructed in the following way. Let us take a measure
ν =

∑
n νnδtn , where δx denotes the Dirac measure at the point x and νn > 0. We

assume also that
∑

n νn(t2n + 1)−1 < ∞. Consider the function

G(z) =
∑

n

νn

(
1

tn − z
− tn

t2n + 1

)
. (3)

Clearly, G is analytic in C+ and Im G(z) > 0, z ∈ C+. Therefore, the function

J =
G− i

G + i

is an inner function in the upper half-plane and it is well-known that {J = 1} =
{tn}. Moreover, in this case ν is a so-called Clark measure corresponding to the
function J (see [11]). Note also that |J ′(tn)| = 2ν−1

n

Theorem 1.2. Let Λ = {λn} and T = {tn}, where λn ∈ C+ and tn ∈ R, and let
BΛ denote the Blaschke product with the zeros {λn}. Assume that for each of the
points tn the function Θ is analytic in some neighborhood of tn. Then the system
K(Λ)∪K(T ) is not complete in KΘ if and only if there exists an inner function J
with {J = 1} = T such that

arg Θ− arg BΛ − arg J = 2l̃og m + 2πk + γ, a.e. on R,

for some function m ≥ 0 with m ∈ L2(R) and log m ∈ L1(Π), for a measurable
integer-valued function k and for a real number γ.

We consider a few applications of these general criteria. Our first application
is connected with the stability of the completeness property. It turns out that in
many important particular cases the system {Kλn} under consideration is a small
perturbation of some other system {Kµn} of reproducing kernels (that is, λn ≈ µn

in a certain sense), which is already known to be complete in KΘ. For the case of
systems of exponentials certain results of this type were obtained by N. Levinson
and R. Redheffer. General model subspaces were considered by E. Fricain [17]. In
particular he proved the following theorem: if the system {Kµn} is complete in KΘ

and ∑
n

∣∣∣∣
λn − µn

λn − µn

∣∣∣∣ < ∞, (4)

then the system {Kλn} is also complete in KΘ. We obtain the following general-
ization of this result.

Theorem 1.3. Let Λ = {λn}, M = {µn}, where λn, µn ∈ C+, and let the system
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K(M) be complete in KΘ. If for some choice of the arguments ϕΛ and ϕM of the
Blaschke products BΛ and BM we have ϕΛ − ϕM ∈ L1(Π) and

(ϕΛ − ϕM)˜ ∈ L∞(R), (5)

then the system K(Λ) is also complete in KΘ. Condition (5) is satisfied if

R ∈ L∞(R), where R(t) =
∑

n

∣∣∣∣
λn − µn

t− µn

∣∣∣∣ . (6)

Remarks. 1. Clearly, (4) implies that

∑
n

|λn − µn|
Im µn

< ∞,

and so the boundedness of the function (6) follows immediately from (4). On the
other hand, condition (6) is more subtle since it takes into account the properties
of the set {µn}.

2. It should be emphasized that all the above results have their analogues
for the Lp generalizations of the model subspaces, that is, for the subspaces Kp

Θ =
Hp∩ΘHp of the Hardy class Hp, 1 < p < ∞. Note that if p > 1, then Kz ∈ Kp

Θ for
any z ∈ C+ and also for z = x ∈ R if Θ is analytic in a neighborhood of x. Thus,
one may consider the problem of completeness of a system K(Λ) in Kp

Θ which is
equivalent to the problem of uniqueness for the space Kq

Θ with 1/p + 1/q = 1 due
to the well-known duality between Kp

Θ and Kq
Θ.

To obtain the corresponding results for Kp
Θ one should just replace “m ∈ L2(R)”

in the statements of Theorems 1 and 2 by “m ∈ Lq(R)”. The statement of Theorem
1.3 requires no changes at all. The proofs of the Lp versions are analogous.

Our next result on stability of completeness shows that in the case when two
meromorphic inner functions Θ and Θ◦ are in a sense sufficiently close to each
other, the spaces KΘ and KΘ◦ have the same sets of uniqueness.

Corollary 1.4. Let Θ, Θ◦ be inner functions such that for a certain choice of their
arguments ϕ and ϕ◦ we have ϕ− ϕ◦ ∈ L1(Π) and

(ϕ− ϕ◦)˜ ∈ L∞(R).

Let Λ ⊂ C+ and let K(Λ) and K◦(Λ) be the corresponding systems of reproducing
kernels of the model subspaces KΘ and KΘ◦. Then the system K(Λ) is complete in
KΘ if and only if K◦(Λ) is complete in KΘ◦.

Now we apply Theorem 1.2 to obtain necessary conditions and sufficient con-
ditions of completeness in terms of certain densities. We will need the important
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class of orthogonal bases of reproducing kernels in the model subspaces. Such bases
were studied by L. de Branges [9] for meromorphic inner functions and by D.N.
Clark [11] in the general case. We restrict ourselves by the case of meromorphic
inner functions.

Let Θ be a meromorphic inner function and let ϕ be an increasing branch of
its argument. For α ∈ [0, 2π) we consider the set of points sn ∈ R such that

ϕ(sn) = α + 2πn, n ∈ Z. (7)

It should be noted that the points sn may exist not for all n ∈ Z (for example, the
sequence {sn} may be one-side, that is, sn may exist only for n ≥ n0).

If the points sn are defined by (7), then the system of reproducing kernels
{Ksn} is an orthogonal basis for KΘ for each α ∈ [0, 2π) except, may be, one (α
is an exceptional value if and only if Θ − eiα ∈ L2(R); a criterion of existence of
such an α in terms of factorization parameters of Θ may be found in [30] or [3]).
If α is an exceptional value, then the orthogonal complement of the span of {Ksn}
is the one-dimensional space generated by the function Θ− eiα.

In what follows we assume without loss of generality that the system {Ksn}
corresponding to α = 0 is a basis. Therefore each f ∈ KΘ admits the expansion

f(z) =
∑

n

f(sn)

‖Ksn‖2
2

Ksn(z), z ∈ C+,

and the series converges uniformly on compact subsets of C+. Recall also that
2π‖Kx‖2

2 = |Θ′(x)| = ϕ′(x), x ∈ R, and, therefore,

‖f‖2
2 = 2π

∑
n

|f(sn)|2
ϕ′(sn)

, f ∈ KΘ.

Clearly, {sn} is a uniqueness set for KΘ and, at the same time, it is an in-
terpolating sequence in the following sense: for each sequence {cn} such that∑

n |cn|2/|Θ′(sn)| < ∞ there exists a function f ∈ KΘ such that f(sn) = cn.

To determine whether a real sequence T = {tm} is a uniqueness set for KΘ we
introduce the following densities. For r ∈ N we put

D+(T, r) = sup
n

#{m : tm ∈ [sn, sn+r)}, D−(T, r) = inf
n

#{m : tm ∈ [sn, sn+r)}

and we put

D+(T ) = lim
r→∞

D+(T, r)

r
, D−(T ) = lim

r→∞
D−(T, r)

r
;
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both limits exist due to the superadditivity of D−(T, r) and the subadditivity of
D+(T, r).

Assume that D+(T ) < 1, which means that the sequence {tm} is essentially
more sparse than {sn}. Since {sn} is both complete and interpolating sequence for
KΘ, it seems to be a natural conjecture that T is not a uniqueness set for KΘ and
so the system of reproducing kernels K(T ) is not complete. On the other hand, if
D−(T ) > 1, that is, T is more dense than a uniqueness set {sn}, one can expect
that T is a uniqueness set.

For the case of systems of exponentials (equivalently, for the case Θ(z) =
exp(iaz), where sn = 2πn/a, n ∈ Z) these statements are classical (see, for exam-
ple, [22, 31]). We prove analogous results in a more general situation. It is well
known that in the case when a meromorphic function Θ satisfies the condition

Θ′ ∈ L∞(R), (8)

the model subspace KΘ shares many properties of the Paley–Wiener spaces (see
[14, 15, 16]). Note that (8) implies that infn(sn+1− sn) > 0 since

∫ sn+1

sn
|Θ′| = 2π.

Theorem 1.5. Let Θ be a meromorphic inner function such that Θ′ ∈ L∞(R) and
let {sn}, T = {tm}, D+(T ) and D−(T ) be as above. We assume also that

sup
n

∣∣∣∣∣
∑

k 6=n

(
1

sn − sk

+
sk

s2
k + 1

)∣∣∣∣∣ < ∞. (9)

Then
1. if D+(T ) < 1, then T is not a uniqueness set for KΘ;

2. if D−(T ) > 1, then T is a uniqueness set for KΘ.

Remarks. 1. Condition (9) means that the points sn are sufficiently sparse or
symmetric. For example, (9) is fulfilled if supn

∑
k 6=n |sn − sk|−1 < ∞. On the

other hand, if Θ(z) = exp(iaz), then sn = 2πn/a, n ∈ Z, and (9) still holds due
to the symmetry of the points sn.

2. In the case of the Paley–Wiener space PWa much stronger results are known
(see [31], Theorems 2.1 and 2.2). For example, if D−(T ) > 1 and D+(T ) < ∞,
then T is a sampling set for PWa, that is,

∑
m

|f(tm)|2 ³ ‖f‖2
2, f ∈ PWa

(we write g ³ h if C1g ≤ h ≤ C2g for some positive constants C1 and C2 and for
all admissible values of the parameters). One may expect that in the case when
D−(T ) > 1 and D+(T ) < ∞ in the conditions of Theorem 1.5 we have

∑
m

|f(tm)|2
ϕ′(tm)

³ ‖f‖2
2, f ∈ KΘ. (10)
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However, it is not true even for the class of inner functions with bounded derivative
satisfying (9): the estimate of the sum in the left-hand side of (10) from above does
not necessarily hold. Corresponding counterexamples were constructed in [4] and
[6], where stability of Riesz bases of reproducing kernels under small perturbations
was studied.

2. Description of Riesz bases of reproducing kernels

Description of Riesz bases of reproducing kernels in the model subspaces is
closely connected with interpolation problems, namely, with the so-called free in-
terpolation phenomenon. It was for the first time mentioned in [25] that, by duality
arguments, the condition “K(Λ) is a Riesz basis in KΘ” is equivalent to the fol-
lowing property: for each {cn} ∈ `2 there exists a unique function f ∈ KΘ such
that

f(λn) = cn‖Kλn‖2,

and, moreover, ‖f‖2 ³ ‖{cn}‖`2, where the constants do not depend on {cn}. In
this case we say that Λ is a complete interpolating sequence for the space KΘ.

We will also consider a weaker sampling property: Λ = {λn} is said to be a
sampling set for KΘ if

A‖f‖2
2 ≤

∑
n

|f(λn)|2/‖Kλn‖2
2 ≤ B‖f‖2

2, f ∈ KΘ,

for some positive constants A and B. In terms of systems of reproducing kernels,
the sampling property means that the normalized kernels {Kλn/‖Kλn‖2} form a
frame in KΘ. Recall that a system {hn} in a Hilbert space H is said to be a frame
if there are positive constants A and B such that

A‖f‖2
H ≤

∑
n

|〈f, hn〉H |2 ≤ B‖f‖2
H , f ∈ H.

Clearly, if the system {hn} is a Riesz basis, then {hn/‖hn‖H} is a frame in H.

A description of Riesz bases of exponentials was obtained by S.V. Hruscev,
N.K. Nikolski and B.S. Pavlov [21] in terms the Helson–Szegö condition. In [21]
also the case of general inner functions is treated and a necessary and sufficient
condition is obtained under the additional restriction

sup
n
|Θ(λn)| < 1. (11)

In this case the system K(λ) is a basis if and only if the sequence Λ satisfies the
Carleson interpolation condition and the Toeplitz operator TΘBΛ

is invertible. The
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invertibility of TΘBΛ
is, in its turn, equivalent to the representation ΘBΛ = αh/h,

where α ∈ C, |α| = 1, and h ∈ H2 is an outer function such that |h|2 satisfies the
Helson–Szegö condition. Recall that a nonnegative function w is said to satisfy the
Helson–Szegö condition if there are functions u, v ∈ L∞(R) such that ‖v‖∞ < π/2
and w = exp(u + ṽ) (where ṽ is the Hilbert transform of v).

However, condition (11) seems to be too restrictive. In many cases there exist
bases of reproducing kernels such that (11) does not hold. In particular, for the
orthogonal de Branges–Clark bases {Ksn}, where sn are defined by (7), we have
sn ∈ R and, thus, |Θ(sn)| ≡ 1.

Here we obtain a description of Riesz bases of the form K(T ), T = {tn} ⊂ R,
for a given meromorphic inner function Θ. To state this criterion we will need
the relationship between the model subspaces generated by meromorphic inner
functions and the de Branges spaces of entire functions.

Let E be an entire function such that

|E(z)| > |E(z)|, z ∈ C+.

In this case we say that E belongs to the Hermite–Biehler class HB. With the func-
tion E ∈ HB we associate the de Branges space H(E) which consists of all entire
functions F such that the functions F/E and F ∗/E, where F ∗(z) = F (z), belong
to the Hardy class H2. The norm in H(E) is defined by ‖F‖E = ‖F/E‖L2(R).
The spaces H(E) introduced by L. de Branges have important applications in
mathematical physics (see [9, 29]).

If E ∈ HB, then Θ = E∗/E is a meromorphic inner function. Conversely,
each meromorphic inner function Θ admits the representation Θ = E∗/E for some
entire function E ∈ HB [19, Lemma 2.1]. Clearly, such a function E is unique up
to a factor S, where S is an entire function without zeros in C+ and C− which is
real on the real axis.

It is easy to see that if Θ = E∗/E, then the mapping F 7→ F/E is a unitary
operator from H(E) onto KΘ, that is, KΘ = H(E)/E (see, for example, [2] or [19,
Theorem 2.10]).

Now we state the main results of this section. We will use essentially the
properties of the de Branges spaces associated with meromorphic inner functions
and the results of J. Ortega-Cerda and K. Seip [27]. We start with the following
criterion.

Theorem 2.1. Let Θ = E∗/E, where E ∈ HB, be a meromorphic inner function,
and let T = {tn} ⊂ R. Then the system K(T ) is a Riesz basis for KΘ if and only
if there exists a meromorphic inner function Θ1 = E∗

1/E1, E1 ∈ HB, such that

1. H(E) = H(E1) as sets with equivalence of norms;

2. T = {Θ1 = 1} and Θ1 − 1 /∈ L2(R).
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For the case H(E) = PWa this theorem is contained in the paper [27], where
frames of exponentials are described. Only minor changes are required to adapt
the proof to the more general situation. However, to apply this criterion one need
to have a description of those functions E1 ∈ HB for which H(E) = H(E1). An
obvious sufficient condition is that |E(z)| ³ |E1(z)|, z ∈ C+ ∪ R. This condition
may be expressed in terms of the arguments of the corresponding inner functions.

Theorem 2.2. Let Θ, Θ1 be meromorphic inner functions with increasing branches
of the arguments ϕ and ϕ1. Assume that ϕ− ϕ1 ∈ L1(Π) and

(ϕ− ϕ1)˜ ∈ L∞(R). (12)

Then there exist entire functions E, E1 ∈ HB such that Θ = E∗/E, Θ1 = E∗
1/E1

and |E(z)| ³ |E1(z)|, z ∈ C+ ∪ R. Conversely, if |E(z)| ³ |E1(z)|, z ∈ C+ ∪ R,
then the arguments ϕ and ϕ1 satisfy (12).

As a corollary we have the following sufficient condition.

Corollary 2.3. Let Θ be a meromorphic inner function with an increasing branch
of the argument ϕ, and let T = {tn} ⊂ R. Assume that there exists a meromorphic
inner function Θ1 with an increasing branch of the argument ϕ1 such that

1. the function ϕ− ϕ1 satisfies (12);

2. T = {Θ1 = 1} and Θ1 − 1 /∈ L2(R).

Then the system K(T ) is a Riesz basis for KΘ.

Example. For an inner function Θ and for ζ ∈ C, |ζ| < 1, one may consider the
Frostman shift

Θ1 =
Θ− ζ

1− ζΘ
.

If Θ = E∗/E, where E ∈ HB, then Θ1 = E∗
1/E1, where E1 = E − ζE∗. Clearly,

E1 ∈ HB and |E(z)| ³ |E1(z)|, z ∈ C+.

We state one more corollary of Theorem 2.2, which shows that if two inner
functions are sufficiently close to each other, then the corresponding model sub-
spaces have the same complete interpolating sequences.

Corollary 2.4. Let Θ, Θ◦ be meromorphic inner functions with increasing
branches of the arguments ϕ and ϕ◦. Denote by Kz and K◦z the reproducing kernels
of the spaces KΘ and KΘ◦ respectively. Assume that ϕ− ϕ◦ ∈ L1(Π) and

(ϕ− ϕ◦)˜ ∈ L∞(R).

Let Λ ⊂ C+∪R. Then K(Λ) is a Riesz basis in KΘ if and only if K◦(Λ) is a Riesz
basis in KΘ◦.
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However, the condition |E(z)| ³ |E1(z)|, z ∈ C+, is not necessary for the
equality H(E) = H(E1). Yu. Lyubarskii and K. Seip [23] have obtained a descrip-
tion of those entire functions E for which H(E) = PWa. Also in [23] an explicit
example may be found of a de Branges space H(E) such that H(E) = PWa and
E is unbounded on R.

Now we state a condition which is necessary and sufficient for H(E) = H(E1).
Recall that a function f analytic in C+ is said to belong to the Smirnov class N+

if f may be represented as g/h, where g, h ∈ H∞ and h is an outer function.

Theorem 2.5. Let E, E1 ∈ HB and let ϕ, ϕ1 be increasing branches of the ar-
guments of the inner functions Θ = E∗/E and Θ1 = E∗

1/E1 respectively. Then
H(E) = H(E1) if and only if the following two conditions hold:

1. E/E1, E1/E ∈ N+ ∩ L2(Π);

2. for each meromorphic inner function I with an increasing continuous branch
of the argument ψ the inclusions

exp((ϕ− ψ)˜) ∈ L1(R)

and
exp((ϕ1 − ψ)˜) ∈ L1(R)

are equivalent.

Remarks. 1. By analogy with the criterion of Hruscev, Nikolski and Pavlov, it
is a natural question, whether equality H(E) = H(E1) implies that the Toeplitz
operator TΘΘ1

is invertible, that is, ΘΘ1 = αh/h, where α ∈ C, |α| = 1, and
h ∈ H2 is an outer function such that |h|2 satisfies the Helson–Szegö condition.
However, it is not the case (see Section 6).

2. Making use of Theorems 2.2 and 2.5 one can obtain new results concerning
stability of bases of reproducing kernels K(Λ) with respect to small perturbations
of the “frequencies” λn in the spirit of the results of Paley, Wiener and M. Kadets
(see [25]). Previously, certain results on stability of Riesz bases in the model
subspaces were obtained in [6, 12, 18].

§3. General criteria of completeness

In this section we prove the general criteria of completeness (Theorems 1.1 and
1.2).

We recall the following equivalent definition of the model subspace KΘ. It is
well known (and easy to see) that a function f ∈ L2(R) is in KΘ if and only if
f ∈ H2 and Θf ∈ H2 (here we identify the functions in H2 with their boundary
values on R; with this identification H2 becomes a closed subspace of L2(R)).

12



Though Theorem 1.1 is a particular case of Theorem 1.2 we prefer to start with
its proof to make the principal ideas more transparent.

Proof of Theorem 1.1. A system K(Λ) is not complete in KΘ if and only if there
is a nonzero function f ∈ KΘ such that f(λn) = 0 for each n. Then f = BΛg for
some function g ∈ H2. Moreover, it is easy to see that g ∈ KΘ since Θg = BΛΘf .

We also may assume without loss of generality that g is an outer function
(otherwise we divide it by the inner factor and the fraction will be still in KΘ).
Recall that each outer function h ∈ H2 is of the form h = Om = exp(log m +

il̃og m), where m ≥ 0, m ∈ L2(R) and log m ∈ L1(Π) (recall that l̃og m stands for
the Hilbert transform of log m). Thus, g = O|f |.

Since BΛg ∈ KΘ, we have ΘBΛg ∈ H2. Therefore

ΘBΛg = IO|f |

for some inner function I, and so

ΘBΛO|f | = IO|f |.

Taking the arguments, we obtain

arg Θ− arg BΛ − l̃og |f | = arg I + l̃og |f |+ 2πk0, (13)

where k0 is an integer-valued measurable function. Now we make use of the fol-
lowing statement: if I is an arbitrary inner function, then its argument may be
represented as

arg I = 2l̃og m1 + 2πk1 + γ1, (14)

where m1 ≥ 0, m1 ∈ L∞(R), log m1 ∈ L1(Π), γ1 ∈ R and k1 is an integer-valued
measurable function. Indeed,

I = −1− I

1− I

whence
arg I = 2 ˜log |1− I|+ π. (15)

(note that 1− I is an outer function in H∞ since Re (1− I) > 0 in C+). Moreover,
it is shown in [7] that m1 may be taken in L2(R) ∩ L∞(R).

Combining equations (13) and (14) we obtain the representation

arg Θ− arg BΛ = 2l̃og m + 2πk + γ, (16)

where m = m1|f |, k = k0 + k1 and γ = γ1.

Now assume that we have the representation (16). Then we have

ΘBΛOm = eiγOm
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and consequently the function f = BΛOm is in KΘ and vanishes at Λ. Hence, the
system K(Λ) is not complete in KΘ. ©
Proof of Theorem 1.2. The proof of this theorem is analogous to the proof
above. Assume that the system K(Λ) ∪ K(T ) is not complete in KΘ. Then there
exists a function f ∈ KΘ of the form f = BΛg, where g is an outer function in KΘ.
Since Θ is analytic near the points tn, it follows that both g and BΛ are analytic in
a neighborhood of tn for each n and g(tn) = 0. By Lemma 2.6 of [24], choosing in
the definition of the function (3) a sequence νn with sufficiently fast decay we may
construct an inner function J with {J = 1} = {tn} such that g/(1 − J) ∈ L2(R)
(though in [24] the case of meromorphic functions is considered the proof uses
only the fact that there exist disjoint neighborhoods of the points tn, where all the
elements of KΘ are analytic).

Note also that 1 − J is an outer function in H∞ since Re (1 − J) > 0 in C+.
Therefore, by the classical Smirnov theorem, g/(1− J) ∈ H2.

Thus, there exists an outer function h ∈ H2 such that f = BΛ(1− J)h ∈ KΘ.
Hence, we have ΘBΛ(1− J)h ∈ H2. It follows that

ΘBΛO|1−J | O|h| = O|1−J |O|h|I

for some inner function I and, consequently,

arg Θ− arg BΛ = 2l̃og |h|+ 2 ˜log |1− J |+ arg I.

By (15), 2 ˜log |1− J | = π+arg J+2πk0 for some integer-valued function k0. Taking
(14) into account we get

arg Θ− arg BΛ − arg J = 2l̃og m + 2πk + γ, (17)

where m = m1|h|, k = k0 + k1 and γ = γ1 + π.

Now assume that there exists an inner function J with {J = 1} = {tn} such
that (17) holds. Then the function f = BΛ(1− J)Om is in KΘ and also BΛJOm ∈
KΘ. Clearly, f(λn) = 0 for each n. Finally, note that since f is analytic in a
neighborhood of tn, both BΛ and J are analytic in a neighborhood of tn and, thus,
the function Om is meromorphic near tn. Since Om ∈ H2, we conclude that Om is
analytic near tn and so f(tn) = 0. ©

To apply Theorems 1.1 and 1.2 one should have a description of the functions

representable as l̃og m for a nonnegative function m ∈ L2(R) up to a summand
of the form 2πk, where k is an integer-valued function. A condition sufficient for
such a representation was proposed by V.P. Havin and J. Mashreghi [20]. To state
it we need the notion of a mainly increasing function.
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We denote by Osc(f, E) the oscillation of a function f on the set E, that is,

Osc(f, E) = sup
s,t∈E

(f(s)− f(t)).

Let f be a C1-function on R and let {dn} (where n ∈ Z or n ∈ N; in the latter
case we assume that d1 = −∞) be an increasing sequence of real numbers such
that lim|n|→∞ |dn| = ∞ and

f(dn+1)− f(dn) ³ 1, n ∈ Z (n ≥ 2).

Assume also that there is a constant C > 0 such that

Osc(f, (dn, dn+1)) ≤ C and Osc(f ′, (dn, dn+1)) ≤ C

for all n ∈ Z (n ∈ N). Such functions f will be referred to as mainly increasing
functions.

It was shown in [20] (see, also, [7]) that each mainly increasing function f
admits the representation

f = 2l̃og m + 2πk + γ,

where m ≥ 0, m ∈ L∞(R) ∩ L2(R), log m ∈ L1(Π), γ ∈ R and k is a measurable
integer-valued function. This theorem is proved in [20] under a small additional
restriction on the distances dn+1 − dn and in [7] in the general case. It should be
mentioned that the condition Osc(f ′, (dn, dn+1)) ≤ C may be replaced by a weaker
integral estimate.

We have an immediate corollary of Theorem 1.2.

Corollary 3.1. Let Θ be a meromorphic inner function. If arg Θ−arg BΛ−arg J
is a mainly increasing function, then Λ ∪ T is not a uniqueness set for KΘ.

Example. Let Λ ⊂ C+, let |λn| → ∞, n →∞, and let

|B′
Λ(t)| = 2

∑
n

Im λn

|t− λn|2 → 0, |t| → ∞. (18)

Then the system {eiλnt} is not complete in L2(0, ε) for any ε > 0. Indeed, it
follows from (18) that εt−ϕΛ is a mainly increasing function for each ε > 0 (here
we denote by ϕΛ an increasing continuous branch of the argument of BΛ) and
therefore the system of reproducing kernels corresponding to Λ is not complete in
Keiεz .

Condition (18) appears in [16] as a criterion of boundedness of the differenti-
ation operator in KBΛ

. In particular, (18) is satisfied if Λ is contained in a Stolz
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angle {z ∈ C+ : Im z ≥ δ|Re z|}, δ > 0, and |λn| → ∞ (in this case we have∑
n |λn|−1 < ∞ and the incompleteness of {eiλnt} follows also from [28, Theorem

41]).

We will see in the proof of Theorem 1.5 that sometimes it is more convenient

to represent T as a finite union T =
L⋃

l=1

Tl and consider the inner functions Jl such

that {Jl = 1} = Tl. Repeating the arguments from the proof of Theorem 1.2 we
obtain the following completeness criterion:

Theorem 3.2. Let T =
L⋃

l=1

Tl ⊂ R and let the function Θ be analytic in a

neighborhood of t for each t ∈ T . Then the system K(T ) is not complete in KΘ if
and only if there exist inner functions Jl with {Jl = 1} = Tl such that

arg Θ−
L∑

l=1

arg Jl = 2l̃og m + 2πk + γ, a.e. on R,

for some function m ≥ 0 satisfying m ∈ L2(R) and log m ∈ L1(Π), for a measur-
able integer-valued function k and for a real number γ.

In the proof of Theorem 1.5 we will use the following corollary of Theorem 3.2.

Corollary 3.3. Let Θ be a meromorphic inner function. If for some inner func-
tions Jl such that {Jl = 1} = Tl the function

arg Θ−
L∑

l=1

arg Jl

is mainly increasing, then T =
L⋃

l=1

Tl is not a uniqueness set for KΘ.

§4. Stability of completeness and density criteria

We start with the proof of Theorem 1.3 on stability of the completeness prop-
erty under small perturbations of “frequencies” λn.

Proof of Theorem 1.3. Assume that Λ is not a uniqueness set for KΘ. Then,
by Theorem 1.1,

arg Θ− ϕΛ = 2l̃og m + 2πk + γ.

The proof will be completed as soon as we show that

ϕΛ − ϕM = 2l̃og m1, (19)

16



where m1 ≥ 0, m1 ∈ L∞(R) and log m1 ∈ L1(Π). Indeed, in this case

arg Θ− arg BM = 2 ˜log(m1m) + 2πk + γ,

and, thus, M = {µn} is not a uniqueness set for KΘ which contradicts the
hypothesis.

Since (ϕΛ − ϕM)˜ ∈ L∞(R), it follows that

ϕΛ − ϕM = 2ũ = 2l̃og m1,

where u ∈ L∞(R) and so m1 = eu ³ 1.

Now we show that the boundedness of (6) implies (19) for certain choice of the
arguments ϕΛ and ϕM . Put

h(z) =
∏
n

(
z − λn

z − µn

)2

, z ∈ C+.

It follows from (6) that the product converges and both h and and h−1 are in H∞.
Thus, h is an outer function. Note that

hBΛBM = |h|, a.e. on R.

Therefore, BΛBM = exp(il̃og |h|) and we have

ϕΛ − ϕM = l̃og |h| = 2l̃og m1,

with m1 =
√
|h| ∈ L∞(R) for a certain choice of the arguments ϕΛ and ϕM . ©

Proof of Corollary 1.4. Since, (ϕ− ϕ◦)˜ ∈ L∞(R), we have

ϕ− ϕ◦ = 2l̃og m1,

where m1 ³ 1. The statement follows immediately from Theorem 1.1. ©

Now we turn to the proof of Theorem 1.5. The following lemma will play the
key role in this proof.

Lemma 4.1. Assume that the real sequence {tn} satisfies the following two con-
ditions:

inf
n

(tn+1 − tn) = δ > 0 (20)

and

sup
k

∣∣∣∣∣
∑

n6=k

(
1

tn − tk
+

tk
t2k + 1

)∣∣∣∣∣ < ∞. (21)
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Let G be the function of the form (3) with νn ≡ 1, that is,

G(z) =
∑

n

(
1

tn − z
− tn

t2n + 1

)
,

and let J = (G− i)/(G + i). Then J ′ ∈ L∞(R).

Proof. By the definition of J we have

|J ′(t)| = 2|G′(t)|
|G(t) + i|2 ≤

2

|G(t) + i|2
∑

n

1

|t− tn|2 , t ∈ R.

Note that G(t) ∈ R, t ∈ R. Therefore, for any ε > 0 there exists a constant
C = C(ε) > 0 such that |J ′(t)| ≤ C if |t − tn| ≥ ε for each n. Now assume that
|t− tn| < ε < δ/2 for some n. Then

|J ′(t)| ≤
∑

k 6=n

2

|t− tk|2 + 2

(
1 + (tn − t)

[
− tn

t2n + 1
+

∑

k 6=n

(
1

tk − t
− tk

t2k + 1

)])−2

.

The conditions (20) and (21) imply that for sufficiently small ε
∣∣∣∣∣(t− tn)

∑

k 6=n

(
1

tk − t
− tk

t2k + 1

)∣∣∣∣∣ ≤
1

2
, |t− tn| < ε.

Thus, J ′ ∈ L∞(R). ©
We will also need two more lemmas. The first one is a particular case of the

results of [2] and [5, Theorem 1.5] on embeddings of model subspaces.

Lemma 4.2. Let Θ′ ∈ L∞(R) and let the sequence {tn} satisfy (20). Then there
exists C > 0 such that

∑
n

|f(tn)|2 ≤ C‖f‖2
2, f ∈ KΘ.

Lemma 4.3. Let Θ′ ∈ L∞(R), let the sequence {tn} satisfy (20) and (21), and
let J be the inner function constructed in Lemma 4.1. If f ∈ KΘ and f(tn) = 0
for each n, then f/(1− J) ∈ KΘ.

Proof. It is sufficient to show that f/(1 − J) ∈ L2(R). Indeed, then, by the
Smirnov theorem, f/(1− J) ∈ H2 and, analogously, Θf/(1− J) ∈ L2(R). Hence,

Θ
f

1− J
=

Θf

J − 1
J ∈ H2

and, therefore, f/(1− J) ∈ KΘ.
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Note that |J ′(tn)| = 2ν−1
n = 2. By Lemma 4.1, J ′ ∈ L∞(R) and, in particular,

infn Im zn > 0, where zn are zeros of Θ. Now it follows immediately from the
formula (2) for the modulus of the derivative of an inner function that for each
ε > 0 there exists positive constants C1 and C2 such that

C1 ≤ |J ′(s)|/|J ′(t)| ≤ C2, s, t ∈ R, |s− t| ≤ ε,

and, in particular, |J ′(t)| ³ 1, |t− tn| ≤ ε. Let us fix ε < δ/2 and denote by ψ an
increasing branch of the argument of J . Since |J ′(t)| = ψ′(t), it follows that

0 < C3 ≤ ψ(tn + ε)− ψ(tn) =

tn+ε∫

tn

ψ′ ≤ C4 < 2π

and
0 < C3 ≤ ψ(tn)− ψ(tn − ε) ≤ C4 < 2π

for some constants C3 and C4 independent of n. Recall that {tn} = {J = 1} and,
therefore,

|J(t)− 1| = |eiψ(t) − 1| ≥ C5 > 0, |t− tn| > ε,

for each n. Hence, the function f/(1 − J) is square summable on the set R \ E,
where

E =
⋃
n

[tn − ε, tn + ε].

It remains to estimate the function f/(1 − J) on the set E. Let |t − tn| ≤ ε.
Then ∣∣∣∣

f(t)

1− J(t)

∣∣∣∣ = |f(t)| ·
∣∣∣∣2 sin

ψ(t)− ψ(tn)

2

∣∣∣∣
−1

≤ C6
|f(t)|
|t− tn|

since ψ′(t) ³ 1 and
∣∣∣∣sin

ψ(t)− ψ(tn)

2

∣∣∣∣ ³ |ψ(t)− ψ(tn)| ³ |t− tn|.

Thus, we have
∣∣∣∣

f(t)

1− J(t)

∣∣∣∣ =

∣∣∣∣
f(t)− f(tn)

1− J(t)

∣∣∣∣ ≤ C6 max
|s−tn|≤ε

|f ′(s)|, |t− tn| ≤ ε.

It is easy to see that f ′ ∈ KΘ2 as soon as f ∈ KΘ (see [16]). Now it follows
from Lemma 4.2 (applied to Θ2 and f ′ instead of f and Θ) that

∑
n

tn+ε∫

tn−ε

∣∣∣∣
f(t)

1− J(t)

∣∣∣∣
2

dt ≤ C7

∑
n

max
|s−tn|≤ε

|f ′(s)|2 < ∞,
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which completes the proof. ©
Proof of Theorem 1.5. We consider here the case when T = {tn}n∈Z and
lim|n|→∞ |tn| = ∞; only minor changes are required in the case of one-side se-
quences. Let D+(T ) < 1. Then there exists L ∈ N, L > 2, such that

#{m : tm ∈ [sn, sn+L)} ≤ L− 2

for any n. We may add to T arbitrary points (if necessary) so that

#{m : tm ∈ [snL, s(n+1)L)} = L− 2.

Then we may represent T as the union T =
L−2⋃
l=1

Tl where Tl = {tln} and tln is the

element of the set T ∩ [snL, s(n+1)L) with the number l (if we number the points in
the increasing order).

Clearly,
inf
n 6=k

|tln − tlk| > 0.

Moreover it is easy to verify that (9) implies that the sequence {tln} satisfies con-
dition (21) of Lemma 4.1. Let Jl be an inner function such that {Jl = 1} = Tl and
J ′l ∈ L∞(R) constructed in Lemma 4.1. Denote by ϕ and ψl increasing branches of
the arguments of Θ and Jl respectively. Note that ϕ′, ψ′l ∈ L∞(R). We will show
that

f = ϕ−
L−2∑

l=1

ψl

is a mainly increasing function. Then, by Corollary 3.3, T is not a uniqueness set
for KΘ.

Indeed, let r be a sufficiently large positive integer. Put dn = snrL. Let us show
that the function f and sequence {dn} satisfy the definition of a mainly increasing
function. Clearly, Osc(ϕ, In) = 2πrL. For a fixed n there are exactly r points
tlm+1, . . . t

l
m+r of the set Tl in the interval In = [snrL, s(n+1)rL). Hence,

dn+1∫

dn

ψ′l ≤
tlm+r+1∫

tlm

ψ′l ≤ 2π(r + 1).

We used the fact that
tlk+1∫

tlk

ψ′l = 2π
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for any k and l. Therefore, Osc(
∑L−2

l=1 ψ′l, In) ≤ 2π(r+1)(L−2) and, in particular,

f(dn+1)− f(dn) ≥ 2πrL− 2π(r + 1)(L− 2) = 4π(r + 1)− 2πL > 2πL

if r > L− 1. Finally, since ϕ′, ψ′l ∈ L∞(R), we have supn Osc(f ′, In) < ∞. Hence,
the function f is mainly increasing which proves the first statement.

Now we prove the second statement of the theorem. Assume that D−(T ) > 1.
Choosing a subsequence if necessary, we may also assume that D+(T ) < ∞. By
the same arguments as above, in this case we may split the set T (after eliminating
part of the points) into a finite union of disjoint sets Tl, l = 1, . . . L, and construct
the inner functions Jl such that the function

∑L
l=1 ψl − ϕ is mainly increasing.

Therefore
L∑

l=1

ψl − ϕ = 2l̃og m1 + 2πk1 + γ1, (22)

where m1 ∈ L2(R)∩L∞(R), m1 ≥ 0, log m1 ∈ L1(Π), γ1 ∈ R and k1 is a measurable
integer-valued function.

Assume that T is not a uniqueness set for KΘ. Then, there exists a nonzero
function f ∈ KΘ such that f(t) = 0, t ∈ T . By Lemma 4.3, the function

f

(1− J1)(1− J2) . . . (1− JL)

is in KΘ, and therefore (as in the proof of Theorem 1.2)

ϕ−
L∑

l=1

ψl = 2l̃og m2 + 2πk2 + γ2, (23)

where m2 ∈ L2(R)∩L∞(R), m2 ≥ 0, log m2 ∈ L1(Π), γ2 ∈ R and k2 is a measurable
integer-valued function. The inclusion m2 ∈ L∞(R) follows from the fact that in
the case when Θ′ ∈ L∞(R) we have KΘ ⊂ L∞(R) (see [14, 15]).

Combining (22) and (23) we get

2l̃og m3 + 2πk3 + γ3 = 0, (24)

where m3 = m1m2 ∈ L2(R)∩L∞(R), γ3 ∈ R and k3 is an integer-valued function.
To complete the proof we apply an argument from [7], Lemma 14, which shows that
(24) may hold only if m3 ³ 1 on R (thus, we get a contradiction since m3 ∈ L2(R)).

We say that a nonnegative function w on the real line is an admissible majorant
for some model subspace Kθ if there is a non-zero function f ∈ Kθ such that
|f | ≤ w a.e. on R. In [19, 20] the following admissibility criterion is given: w is
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an admissible majorant for Kθ if and only if there exists a function m ∈ L∞(R)
with m ≥ 0, mw ∈ L2(R) and log m ∈ L1(Π) such that

arg θ = 2 ˜log(mw) + 2πk + γ, a.e. on R,

for a measurable integer-valued function k and for some γ ∈ R.

Now it follows from (24) that for any θ and for any Kθ-admissible majorant w
the majorant m3w is also admissible for Kθ. For example, let θ(z) = z−i

z+i
. Then

Kθ is a one-dimensional space generated by the function f(z) = 1
z+i

. Thus, the

majorant w(t) = 1
|t+i| is admissible, and, clearly, it follows from admissibility of

m3w that ess infRm3 > 0. ©

§5. Proof of the Riesz bases’ criterion

We start with the following theorem on sampling for the de Branges spaces,
which is analogous to the theorem of Ortega-Cerda and Seip on sampling in the
Paley–Wiener spaces. We say that the T = {tn} ⊂ R is a sampling set for the
space H(E) if

A‖F‖2
E ≤

∑
n

|F (tn)|2
|E(tn)|2ϕ′(tn)

≤ B‖F‖2
E, F ∈ H(E), (25)

which is equivalent to say that T is sampling for KΘ with Θ = E∗/E.

Theorem 5.1. Let E ∈ HB and let T = {tn} ⊂ R. If T is a sampling set for
KΘ, then there exist entire functions E1, E2, where E1 ∈ HB and E2 is either in
HB or a constant function, such that

1. H(E) = H(E1);

2. T is the zero set for the function E1E2 − E∗
1E

∗
2 ;

3. 1−Θ1Θ2 /∈ L2(R), where Θ1 = E∗
1/E1 and Θ2 = E∗

2/E2.

This theorem was proved in [27] for the case H(E) = PWa (that is, E(z) =
exp(−iaz)). However, the proof works in the general case (the only difference is
in the definition of the function G on page 795 of [27]: one should replace the
canonical product of order one by an arbitrary Weierstrass product with simple
zeros tn). We omit the details.

Remark. It is shown in [27] that in the caseH(E) = PWa the necessary condition
of Theorem 5.1 is sufficient if we assume also that the sequence {tn} is uniformly
separated. To have the converse statement in the general case one have to assume
that the right-hand side estimate in (25) holds.

Proof of Theorem 2.1. Assume that there exists an inner function Θ1 = E∗
1/E1
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such that H(E) = H(E1), T = {Θ1 = 1} and 1 − Θ1 /∈ L2(R). We denote by ϕ
and ϕ1 increasing branches of the arguments of the functions Θ and Θ1.

Denote by K(1)
z the reproducing kernel of the space KΘ1 corresponding to the

point z. It follows that the system K(1)(T ) = {K(1)
tn } is a de Branges–Clark basis for

KΘ1 . Hence, T is a complete interpolation set for KΘ1 , that is, for each sequence
{cn} such that ∑

n

|cn|2/ϕ′1(tn) < ∞

there exists a unique function f ∈ KΘ1 such that f(tn) = cn and, moreover,
‖f‖2

2 ³
∑
n

|cn|2/ϕ′1(tn). In view of the relationship between KΘ1 and H(E1) it is

equivalent to say that for each sequence {dn} satisfying

∑
n

|dn|2(|E1(tn)|2ϕ′1(tn))−1 < ∞

there exists a unique function F ∈ H(E1) such that F (tn) = dn, and ‖F‖2
E ³∑

n

|dn|2(|E1(tn)|2ϕ′1(tn))−1.

Note that the function K(1)(z, ·) = E1K(1)
z is the reproducing kernel of the

space H(E1) corresponding to the point z and, therefore,

1

2π
|E1(t)|2ϕ′1(t) = K(1)(t, t) = sup

F∈H(E1), ‖F‖E1
≤1

|F (t)|2, t ∈ R.

Since H(E) = H(E1) with equivalence of the norms, we have

|E1(t)|2ϕ′1(t) ³ |E(t)|2ϕ′(t), t ∈ R. (26)

Hence, |E1(tn)|2ϕ′1(tn) ³ |E(tn)|2ϕ′(tn) and for each, sequence {dn} satisfying

∑
n

|dn|2(|E(tn)|2ϕ′(tn))−1 < ∞

there exists a unique function F ∈ H(E) such that F (tn) = dn. Thus, T is a
complete interpolating set for KΘ and, consequently, K(T ) is a Riesz basis in KΘ.

Let us prove the converse statement. Assume that K(T ) is a Riesz basis for
KΘ. Hence, T is a complete interpolating set for KΘ and for H(E), that is, for
each sequence {cn} such that

∑
n

|cn|2
|E(tn)|2ϕ′(tn)

< ∞
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there exists a unique function F ∈ H(E) such that F (tn) = cn, and

‖F‖2
E ³

∑
n

|cn|2
|E(tn)|2ϕ′(tn)

.

In particular, T is a sampling set for H(E).

Let E1, E2 be entire functions from Theorem 5.1. To complete the proof it
remains to show that E2 is a constant function.

Assume that E2 is a nontrivial HB-function. It follows from conditions 2 and
3 of Theorem 5.1 that T is a complete interpolating set for the space H(E1E2),
that is, for each {dn} such that

∑
n

|dn|2
|E1(tn)|2|E2(tn)|2(ϕ′1(tn) + ϕ′2(tn))

< ∞

there exists a unique function G ∈ H(E1E2) such that G(tn) = dn.

It is easy to see that the space H(E1E2) admits the orthogonal decomposition

H(E1E2) = E2H(E1)⊕ E∗
1H(E2).

By (26), we have |E1(tn)|2ϕ′1(tn) ³ |E(tn)|2ϕ′(tn). Therefore, for each sequence
{dn} such that

∑
n

|dn|2
|E1(tn)|2|E2(tn)|2ϕ′1(tn)

< ∞

there exists a unique function F ∈ E2H(E) such that F (tn) = dn. Clearly, the
functions G ∈ H(E1E2) such that

∑
n

|G(tn)|2
|E1(tn)|2|E2(tn)|2ϕ′1(tn)

< ∞

are dense in H(E1E2). Hence, the closed proper subspace E2H(E1) is dense in
H(E1E2) and we got a contradiction. ©
Proof of Theorem 2.2. Let E,E1 be HB entire functions without real zeros
such that Θ = E∗/E and Θ1 = E∗

1/E1. We show that one can choose another
entire function E2 ∈ HB such that Θ = E∗

2/E2 and |E2(z)| ³ |E1(z)|, z ∈ C+∪R.

Put f = (ϕ1 − ϕ)/2 and let

w(t) = exp(f̃(t) + if(t)), t ∈ R.

By the hypothesis, f̃ ∈ L∞(R), and, therefore, w (extended to the upper half-
plane) is an outer function in H∞ and w−1 ∈ H∞. Moreover, since f is in C∞(R),
it follows that the functions w and w−1 are continuous in C+.
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Note that E(t)eiϕ(t)/2 ∈ R, t ∈ R. Put

S(z) =
E1(z)

E(z)
w(z).

Clearly, S is analytic in C+ and continuous in C+. We have

S(t) =
E1(t) exp(iϕ1(t)/2)

E(t) exp(iϕ(t)/2)
exp(f̃(t)) ∈ R, t ∈ R.

Hence, S may be extended to an entire function in the whole complex plane.

Now put E2 = SE. Since S is non-vanishing and real on the real axis, it
follows that E2 ∈ HB. We have also E2/E1 = w and, therefore, |E2(z)| ³ |E1(z)|,
z ∈ C+.

The converse statement is immediate. Indeed, if |E(z)| ³ |E1(z)|, z ∈ C+,
then, up to a constant summand,

ϕ1 − ϕ = 2l̃og |w|,
where w = E/E1 ∈ H∞ and w−1 ∈ H∞. ©
Proof of Corollary 2.3. By Theorem 2.2, there exist entire functions E, E1 ∈
HB such that Θ = E∗/E, Θ1 = E∗

1/E1 and H(E) = H(E1). Now the statement
follows from Theorem 2.1. ©
Proof of Corollary 2.4. By Theorem 2.2, condition (ϕ− ϕ◦)˜ ∈ L∞(R) implies
that there exist entire functions E, E◦ ∈ HB such that Θ = E∗/E, Θ◦ = (E◦)∗/E◦

and H(E) = H(E◦). Hence, the classes of complete interpolating sequences for
the spaces KΘ and KΘ◦ coincide. ©
Example. Let Θ = BΛ and Θ◦ = BM , where BΛ and BM are meromorphic
Blaschke products associated with the sequences Λ = {λn} and M = {µn} such
that |λn| → ∞, |µn| → ∞, n →∞. Assume that Λ and M satisfy the conditions
of Theorem 1.3, that is, the function (6) is bounded. We have shown in the proof of
Theorem 1.3 that for certain choice of the arguments (arg BΛ−arg BM)˜ ∈ L∞(R).
Hence, the spaces KBΛ

and KBM
have the same complete interpolating sequences.

In the proof of Theorem 2.5 we will use a version of the description of the
moduli of elements of a given model subspace obtained by K.M. Dyakonov [13]
(see, also, [19, Lemma 4.2]).

Lemma 5.2. Let Θ be a meromorphic inner function and let m ≥ 0 be a contin-
uous on R function such that m ∈ L2(R) and log m ∈ L1(Π). Then m = |f | for
some function f ∈ KΘ which has no real zeros if and only if there exists a mero-
morphic inner function I with an increasing continuous branch of the argument ψ
such that

2l̃og m = ϕ− ψ. (27)
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Proof. Recall that f ∈ KΘ if and only if f ∈ H2 and Θf ∈ H2. Hence, the
function f = OmI1, where m ≥ 0, m ∈ L2(R), log m ∈ L1(Π) and I1 is an inner
function, is in KΘ if and only if

Om I1Θ = OmI2

for some inner function I2. Since Θ is meromorphic, both I1 and I2 are meromor-
phic inner functions and so

2l̃og m = ϕ− ψ1 − ψ2 + 2πk, a.e. on R,

where ψ1 and ψ2 are continuous increasing branches of the arguments of I1 and I2

respectively and k is an integer-valued measurable function. Since m = |f | 6= 0 on

R, the function l̃og m is continuous on R and, therefore, k is a constant function.
Choosing another branch of the argument of I1 we can make k = 0. To obtain
(27) we put I = I1I2. The converse is analogous. ©
Proof of Theorem 2.5: necessity. Let H(E) = H(E1). Denote by K(ζ, ·) the
reproducing kernel of the space H(E) corresponding to the point ζ. Recall that

K(ζ, z) =
i

2π
· E(z)E(ζ)− E∗(z)E∗(ζ)

z − ζ
.

Take ζ0 ∈ C+. Since K(ζ0, ·) ∈ H(E1), we have h = K(ζ0, ·)/E1 ∈ H2. Hence,

E(z)

E1(z)
=

2π

iE(ζ0)
· h(z) · z − ζ0

1−Θ(z)Θ(ζ0)
.

Now inclusions h ∈ N+ and z−ζ0

1−Θ(z)Θ(ζ0)
∈ N+ imply that E/E1 ∈ N+. Clearly, we

have also E/E1 ∈ L2(Π). Analogously, E1/E ∈ N+ ∩ L2(Π).

Put w = E/E1. Since w ∈ N+, we have, in particular, log |w| ∈ L1(Π). Note

also that w is an outer function, that is w = O|w| = |w| exp(il̃og |w|) on R. We
have already mentioned that E(t) exp(iϕ(t)/2) ∈ R and so

w2(t) = |w(t)|2 exp(i(ϕ1(t)− ϕ(t))).

Note that the functions l̃og w and ϕ1 − ϕ are continuous. Hence,

2l̃og |w| = ϕ1 − ϕ (28)

up to a constant summand of tne form 2πn. Choosing, if necessary, another branch
of the argument of Θ1, we may assume n = 0.
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Since H(E) = H(E1), we have wf ∈ KΘ1 for each f ∈ KΘ. In particular, if
m = |f |, then wm ∈ L2(R). Assume that for some meromorphic inner function I
we have exp((ϕ− ψ)˜) ∈ L1(R) or, equivalently,

ϕ− ψ = 2l̃og m

for some m ∈ L2(R) (recall that, up to a constant, ˜̃g = g for any g ∈ L1(Π)).
Then, by Lemma 5.2, m = |f | for some f ∈ KΘ, and, in particular, wm ∈ L2(R).
By (28),

2 ˜log |w|m = ϕ1 − ψ,

which is equivalent to exp((ϕ1 − ψ)˜) ∈ L1(R).

Proof of Theorem 2.5: sufficiency. Now assume that E1 and E2 satisfy
conditions 1 and 2 of the theorem. We will show that wKΘ ⊂ KΘ1 . Since
w = E/E1 ∈ N+, we have (28) up to a constant summand.

Let f ∈ KΘ. To prove the inclusion wf ∈ KΘ1 it suffices to show that wf ∈
L2(R). Indeed, wf ∈ N+ and we have wf ∈ H2 by the Smirnov theorem. By the
definition of w,

w(t)/w(t) = Θ(t)Θ1(t), t ∈ R.

Therefore, we have on R

wfΘ1 = wΘΘ1fΘ = wΘf ∈ H2

since Θf ∈ H2. Thus, wf ∈ KΘ1 .

Note also that we can verify the inclusion wf ∈ L2(R) only for functions f
without real zeros. If f(tn) = 0, tn ∈ R, we can choose a sequence yn tending to
zero sufficiently rapidly such that the function

g(z) = f(z)
∏
n

z − tn − iyn

z − tn

is also in L2(R). Clearly, g ∈ KΘ, g has no real zeros and |g(t)| ≥ |f(t)|, t ∈ R.
Thus, if wg ∈ L2(R), then wf ∈ L2(R).

Now let f ∈ KΘ and f 6= 0 on R. Then, by Lemma 5.2,

2l̃og |f | = ϕ− ψ

for some meromorphic inner function I with an argument ψ. By (28),

2 ˜log |wf | = ϕ1 − ψ

and the condition 2 of the theorem implies that wf ∈ L2(R). ©
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Remark. We show that, in contrast to the criterion of Hruscev, Nikolski and
Pavlov, the invertibility of the Toeplitz operator TΘΘ1

is not necessary for the
equality H(E) = H(E1). We will use an example from [23]. Let 0 < δ < 1/4 and
let λ0 = i,

λn =

{
n− δ + in−4δ, n > 0,

n + δ + i|n|−4δ, n < 0.

Let E(z) = exp(−πiz) and let

E1(z) = lim
R→∞

∏

|λn|<R

(
1− z

λn

)
. (29)

Then H(E) = H(E1). However, the Toeplitz operator TΘΘ1
, where Θ =

exp(2πiz) = E∗/E and Θ1 = BΛ = E∗
1/E1, is not invertible.

It is well known (see [21]) that TΘΘ1
is invertible if and only if PΘ|KΘ1

(where
PΘ denotes the orthogonal projector in H2 onto KΘ) is an isomorphism onto KΘ.
Clearly,

PΘK(1)
λn

=
i

2π
PΘ

(
1

z − λn

)
=

i

2π
· 1−Θ(λn)Θ(z)

z − λn

= Kλn .

Since ‖(z − λn)−1‖2 ³ |n|2δ, n 6= 0, and ‖Kλn‖2 ³ 1, it follows that the operator
PΘ|KΘ1

is not invertible.

On the other hand, invertibility of TΘΘ1
, even combined with some growth

conditions on E/E1 (say, E/E1 and E1/E belong to N+ ∩L2(Π)), is not sufficient
for H(E) = H(E1). Let E(z) = exp(−πiz) and define E1 by (29) but with another
zero sequence

λn =

{
n + i, n ≤ 0,

n + δ + i, n > 0,

where 0 < δ < 1/4. Then Θ = E∗/E = exp(2πiz) and Θ1 = E∗
1/E1 = BΛ. By the

Ingham–Kadets 1/4 theorem, the system of exponentials {eiλnt} is a Riesz basis
in L2(0, 2π) and, therefore, the Toeplitz operator Te2πizBΛ

is invertible. However,
H(E) 6= H(E1). Indeed, if H(E) = H(E1), then

|E(t)|2ϕ′(t) ³ |E1(t)|2ϕ′1(t), t ∈ R.

In our case, ϕ′ ³ ϕ′1 ³ 1, but it is easily seen that E/E1 is unbounded on R
(|E(x)/E1(x)| ³ |x|δ, |x →∞|).
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