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Motivation: There is a dichotomy between multiple variables and
parameters. Harmonic analysis using objects defined by multiple
parameters, such as rectangles, raise new difficulties. Starting with
the theme of the maximal function, we can see how the strong
maximal function defined with respect to rectangles is different
from the usual Hardy-Littlewood maximal function.
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1. Strong maximal function Ms = supR
1
|R |

∫
R |f |.

2. Biparameter Hilbert transform H1H2 = ∗ 1
x1x2

3. Generalizing Calderon-Zygmund conditions takes some work

4. Two extremes to defining 〈Tf , g〉 – vector valued (Journe) or
tensor products
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We’ll prove a new representation theorem for the desired 〈Tf , g〉 in
terms of simplier shift operators, through a new characterization of
Calderon-Zygmund operators, inspired by [3], without resorting to
vector valued techniques or a priori boundedness estimates.
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A Calderon-Zygmund operator T is an operator with the following
representation:

〈Tf , g〉 =
∫
Rn+m

∫
Rn+m

K (x , y)f (y)g(x)dxdy (1)

where f and g are from L2 (though eventually we’ll expand on this
using T (1) type theorems). The many requirements of the objects
involved include: f = f1f2 = f1 ⊗ f2, supp(f1 ∩ g1) = ∅.
And for K :
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decay condition:

|K (x , y)| ≤ C
1

|x1 − y1|n
1

|x2 − y2|m

Holder smoothness

|K (x , y)−K (x , (y1, y
′
2 ))−K (x , (y ′

1 , y2))+K (x , y ′)| ≤ C
|y1 − y ′

1 |
δ

|x1 − y1|n+δ
|y2 − y ′

2 |
δ

|x2 − y2|m+δ

whenever |y1 − y ′
1 | ≤ |x1 − y1|/2 and |y2 − y ′

2 | ≤ |x2 − y2|/2.

|K (x , y)−K ((x1, x
′
2 ), y)−K ((x ′

1 , x2), y)+K (x ′, y)| ≤ C
|x1 − x ′

1 |
δ

|x1 − y1|n+δ
|x2 − x ′

2 |
δ

|x2 − y2|m+δ

whenever |x1 − x ′
1 | ≤ |x1 − y1|/2 and |x2 − x ′

2 | ≤ |x2 − y2|/2.
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The mixed smoothness:

|K (x , y) − K ((x1, x
′
2 ), y) − K (x , (y ′

1 , y2)) + K ((x ′
1 , x2), (y

′
1 , y2))|

≤ C
|y1 − y ′

1 |
δ

|x1 − y1|n+δ
|x2 − x ′

2 |
δ

|x2 − y2|m+δ

whenever |y1 − y ′
1 | ≤ |x1 − y1|/2 and |x2 − x ′

2 | ≤ |x2 − y2|/2.

|K (x , y) − K (x , (y1, y
′
2 )) − K ((x ′

1 , x2), y) + K ((x1, x2), (y1, y
′
2 ))|

≤ C
|x1 − x ′

1 |
δ

|x1 − y1|n+δ
|y2 − y ′

2 |
δ

|x2 − y2|m+δ

whenever |x1 − x ′
1 | ≤ |x1 − y1|/2 and |y2 − y ′

2 | ≤ |x2 − y2|/2.

Theresa C. Anderson Biparameter singular integral representation theorem Difficulties raised and overcome in biparameter setting



Also, we have the combined decay/smoothness discussion
(conditions provided to account for decay in one variable and
Holder in the other variable).

|K (x , y) − K (x , (y1, y
′
2 ))| ≤ C

|y1 − y ′
1 |
δ

|x1 − y1|n+δ
1

|x1 − y1|m

whenever |y1 − y ′
1 | ≤ |x1 − y1|/2.

|K (x , y) − K ((x1, x
′
2 ), y)| ≤ C

|x1 − x ′
1 |
δ

|x1 − y1|n+δ
1

|x1 − y1|m

whenever |x1 − x ′
1 | ≤ |x1 − y1|/2.

|K (x , y) − K ((x1, x
′
2 ), y)| ≤ C

1

|x2 − y2|n
|x2 − x ′

2 |
δ

|x2 − y2|m+δ

whenever |x2 − x ′
2 | ≤ |x2 − y2|/2.

|K (x , y) − K (x , (y1, y
′
2 ))| ≤ C

1δ

|x2 − y2|n
|y2 − y ′

2 |
δ

|x2 − y2|m+δ

whenever |y2 − y ′
2 | ≤ |x2 − y2|/2.
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First we assume the CZ structure in each parameter – the ”sliced”
kernel representation:

〈Tf , g〉 =
∫
Rn

∫
Rn

Kf1,g1(x1, y1)f1(y1)g1(x1)dx1dy1

with decay

|K1(x1, y1)| ≤ C (f2, g2)
1

|x1 − y1|n
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and smoothness in x and y

|K1(x1, y1) − K (x ′1, y1)| ≤ C (f2, g2)
|x1 − x ′1|

δ

|x1 − y1|n+δ

|K (x1, y1) − K (x1, y
′
1)| ≤ C (f2, g2)

|y1 − y ′1|
δ

|x1 − y1|n+δ

when |x1 − x ′1| << |x1 − y1|/2 and |y1 − y ′1| < |x1 − y1|/2.
Here C (f , g) is a constant where we require small control over the
diagonal: C (χv , χv ) + C (χv , uv ) + C (uv , χv ) ≤ C |V | where uv is V
adapted with zero mean, that is supp(uv ) ⊂ V , |uv | ≤ 1 and∫

uv = 0.
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1. Besides the constants’ dependence, these are the same as for
the single parameter case.

2. These sliced conditions are what you would expect for a
tensor product generalization of singular integrals.

3. Here we see that these are just some of the requirements, as
boundedness is much more complex.
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Journe dealt with multiparameter operators using vector valued
inequalities – defining an operator valued kernel:

Definition
Let B is a Banach space and 0 < δ < 1. Journe’s vector valued
kernerl is a continous function K : R2/∆→ B such that:

‖K (x , t)‖B ≤ C
1

|x − t |δ

and

‖K (x , t) − K (x ′, t ′)‖B ≤ C
(|x − x ′|+ |t − t ′|)δ

|x − t |1+δ
,

when (|x − x ′|+ |t − t ′| < |x − t |)/2.

This definition encodes much complexity. Additionally, we have a
priori boundedness assumptions mentioned earlier.
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To get the desired L2 bound here, we have a T (1) type theorem
assumptions: T (1),T ∗(1),T1(1),T

∗
1 (1) ∈ BMOp and a WBP:

|〈T (χK ⊗ χV ), χK ⊗ χV 〉| ≤ C |K |V | for all cubes K ∈ Rn and
V ∈ Rm where T1 is the partial adjoint.
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The BMOp is the product BMO space. We define dyadically:

Definition
We say f ∈ BMOp if

sup
Ω

∑
I×J∈Ω

〈f , hI ⊗ hJ〉2 ≤ C |Ω|

where Ω is any open set. The {hI } are Haar functions
hI = |I |−1/2(χl − χr ), where χl is the characteristic function of the
left half of a dyadic interval, and χr is the right half. The hI form
a basis of L2 as well as many other Banach spaces, as long as we
add the noncancellative constant function 1.
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The Haar functions form a localized basis, which naturally fit with
the dyadic structure of a space. We can then define the sqaure
function via Haar:

Definition
The square function is

Sq(f ) = [
∑
K∈Dn

∑
V∈Dm

|〈f , hK ⊗ uV 〉|2
χK ⊗ χV
|K ||V |

]1/2

Then f is in the product Hardy space H1 if and only if
‖Sq(f )‖L1 <∞.
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We also need a few ”diagonal” BMO conditions (using
characteristic functions and some adapted functions).
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The main theorem of this paper is

Theorem
We have

〈Tf , g〉 = CTEwnEwm

∑
i,j∈Z

2−max(i1,i2)δ/22−max(j1,j2)δ/2〈S i,j f , g〉 (2)

where the shifts S are taken with respect to the pair of dyadic
grdis (Dn,Dm) and wn ∈ {{0, 1}n}Z corresponds to a random shift.
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A key concept to the proof of 4 is the use of random dyadic grids.
A basic averaging property with regards to these grids will be
proved, allowing us to rewrite the desired decomposition.
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Good and Bad cubes We call a dyadic cube I ∈ Rn bad if there is
another cube J such that both l(J) ≥ 2r l(I ) and
d(I , ∂(J)) ≤ 2l(I )γl(J)1−γ where γ = δ/(2n + 2δ).
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Definition
Given nonnegative integers (i1, i2), (j1, j2) ∈ Z2, define

S (i ,j)f =
∑
K∈Da

∑
V∈Db

AKV f (3)

where

AKV f =
∑

I1,I2⊆K

∑
J1,J2⊆V

aI ,K ,J,K 〈f , hI1 ⊗ uJ1〉hI2 ⊗ uJ2

and l(I1) = 2−i1 l(K ) and similarity for i2, j1 and j2. Moreover, we

have that a ≤ |I1||I2||J1||J2|
|K ||V |

. and the subshifts (where K ∈ A,V ∈ B)

are L2 bounded with a maximum norm of 1.
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Note that we can rewrite the shift S in the handy kernel
representation:

Sf (x) =
∑
K ,V

AKV f (x) =
∑
K ,V

1

|K × V |

∫
K×V

KAV (x , y)f (y)dy

=

∫
Rn+m

KS(x , y)f (y)dy

As an example, we can consider shifts where i1 = i2 = j1 = j2 = 1,
which give rise to kernels constant on quarters of ”Haar
rectangles”.
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Lemma
We have

〈Tf , g〉 =

CE
∑

I1,I2∈Dn

∑
J1,J2∈Dm

χgood (sm(I ))χgood (sm(J))〈T (hI1⊗uJ1 ), hI2⊗uJ2 〉〈f , hI1⊗uJ1 〉〈g , hI2⊗uJ2 〉

where C = 1/(πngoodπ
m
good), E = EwnEwm , and the summation over

all the 2n − 1 or 2m − 1 cancellative Haar functions is suppressed.
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1. Use trivial representation with expectation - we’ll show this

2. Now take original 〈Tf , g〉 can expand f in Rn

3. multiply and divide by πngood , use independence, and fact that
πngood is independent of I

4. expand g in Rn, split into two sums by lengths of I1 and I2

5. Use independence again when l(I2) > l(I1), compare
l(I1) ≤ l(I2) to trivial sum

6. start over, expand g first, compare l(I1) > l(I2) piece

7. Now we have expansion for Rn

8. Now expand along Rm: expand hI1 ⊗ 〈f , hI1〉1
9. multiply and divide, use independence, expand g part, split

sum

Theresa C. Anderson Biparameter singular integral representation theorem Difficulties raised and overcome in biparameter setting



Thanks to the lemma, to prove 4 we now separate the sums over
good cubes only.∑
l(I1)≤l(I2)

∑
l(J1)≤l(J2)

〈T (hI1 ⊗ uJ1)), hI2 ⊗ uJ2〉〈f , hI1 ⊗ uJ1〉〈g , hI2 ⊗ uJ2〉
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This separates into:∑
l(I1)≤l(I2)

=
∑

d(I1,I2)>l(I1)γl(I2)1−γ

+
∑
I1⊆I2

+
∑
I1=I2

+
∑

d(I1,I2)≤l(I1)γl(I2)1−γ,I1∩I2=∅

where the four sums are denoted separate, in, equal, and near.
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We must do this for when l(I1) ≤ l(I2) and l(J1) ≤ l(J2) resulting
the mixed types . Remember that we have suppressed the critical
fact that all cubes are good

Theresa C. Anderson Biparameter singular integral representation theorem Difficulties raised and overcome in biparameter setting



The proof of the main theorem is a case by case analysis of each
scenario mentioned above. By extimation, each piece can be
estimated by a sum of the simple shifts with good decay factors,
allowing us the representation 2 and hence the following corollary.

Corollary

The singular integral operator defined in 2 is L2 bounded.
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A recent application of the importance of this representation is the
famous A2 conjecture, proved by Hytonen and Lerner, though with
contributions by many, many others [4],[1]. Both the techniques
leading to the proof of 4 and the applications of the result are
fascinating! The type of representation in 4 and the lemmas used
to prove it are in the flavor of [4]. And there are many other open
questions that can possibly be attacked using such a
representation, as it translates singular intergral operator questions
to dyadic questions.
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